再发:迄今为止 脑网络结构功能模块元素 最全面复杂清晰 类芯片多图及分解...

7e4cb2eb6dfa3d32bb0ba3a43c607180.png

来源:CreateAMind

从工程的角度来看,大脑皮层是一个六层电路卡,由晶体管和逻辑门组成,其密度是我们最紧凑的微处理器(Apple A8)的五倍。然后它被智能折叠起来以适应更小的空间,同时还减少了相互连接的轴突的长度。大脑皮层的最小估计处理能力(基于突触等于晶体管)超过 34,500 个英特尔四核 i7 处理器,而实际上它甚至可能更高。

图1

01562ad42c6c1ba01fea421efbdba633.jpeg

原图: 

http://www.thehighestofthemountains.org/images/thehighestofthemountains_brain_quotes_rev27_image.pdf

极其复杂的类芯片电路图2

ebe6d7f6dbc0247d7d831c64641e4de6.jpeg

原图:

http://www.thehighestofthemountains.org/images/thehighestofthemountains_brain_map_rev117_image.pdf  阅读原文下载

决策

cd395fe7a85f6470435dc77d5b04e9b2.jpeg

情绪:

b5a466b23924807da7050564e262f5d1.jpeg

图1 图2部分单独展示:

神经元:

9c814f08a3a29b7992f9190474c2fe11.jpeg

71c22f0b905342bc6b5855978b036551.jpeg

b8c570476d3b7e23fd80236e3fe8780a.jpeg

57d019f4f62c83536f35ae0827884701.jpeg

9ea194569f8417c0ca12648a4636e2c2.jpeg

0613e0bf20ebffe43b44a635d266a9cd.jpeg

b8c1f63166890d275cf5b42c5e59587f.jpeg

4363ac8d96324e7a636e40b259e93b0c.jpeg

5764415fa41659ca4d368495c1cc6223.jpeg

0ddd9209a711b69ddbb4ea1cff87f2f1.jpeg

0f1c2ee5c981a497aeff86973f5309c7.jpeg

6367b9525d66f28d11a86c9c6501cd41.jpeg

6db1bde340ac0dd40912597ed13dbd66.jpeg

以前没有人编制过这张完整地图的原因是,研究人员可以将整个职业生涯都花在一个大脑区域上。他们为分析该区域所做的工作量需要许多实验,需要资金,并且可能需要对活体动物进行研究或通过解剖。做他们所做的事情需要很大的耐心,我尊重他们的努力。但不幸的是,大多数神经科学家没有接受过任何电子设计、编程或设计工程方面的培训,他们基本上正在研究世界上最先进的生物机器人。我编制的脑图上的每一个联系都直接来自我必须回顾的数千项神经科学研究。因此,这项工作总结了一百多年的研究。您看到的点对点连接代表了数百到数百万条平行的轴突纤维(线)为相同的区域供电。例如,在大脑地图上标记为 PC 的丘脑内侧背核的小细胞核包含超过 630 万个不同的连接。这看起来只是脑图上的一个连接。随意查看这些脑图并使用它们来了解我们的想法。您将很快了解我们的大脑电路实际上是多么有条理,并且可能会像我一样问自己,它到底是如何连接的?我真诚地希望这项工作能够改善人类的健康和幸福,并通过改变我们的思维模式来发现人类如何在没有药物的情况下治愈。当然我也希望我能把所有的荣耀都给创造它的工程师。它们是受版权保护的作品,但只要不编辑水印、版权或网站链接,您就可以保存它们。在下一节中,我将解释该项目是如何开始的,并详细解释了这些电路中有多少工作,包括大脑如何设计用于检测面部、面部表情甚至裸露的身体部位。你不想错过这个!

作者的部分参考文献:

cacba8786adf50e120951076c284932d.jpeg

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

788ae27a725cab42025de43b1a8e2ea3.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481783.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

量子计算机研究进展

量子计算机研究进展 人工智能技术与咨询 来自《南京邮电大学学报(自然科学版)》,作者郭光灿等 摘要:量子计算机是未来量子技术时代最具颠覆性的技术,文中将以量子计算机的诞生、工作原理和在世界范围内的发展现状为主要阐述内容。目前阶段…

意识理论综述:众多竞争的意识理论如何相互关联?(干货)

来源:集智俱乐部 作者:Anil K. Seth & Tim Bayne译者:李路凯、陈斯信编辑:邓一雪导语意识和底层的神经活动之间如何联系起来?试图解释这一问题的意识理论层出不穷。然而,随着实验数据积累,众…

数字化转型知识方法系列之三:以价值效益为导向推进数字化转型的五大重点任务

数字化转型知识方法系列之三:以价值效益为导向推进数字化转型的五大重点任务 人工智能技术与咨询 一、数字化转型应围绕价值效益系统性推进 新一轮科技革命和产业变革迅猛发展,世界正处在一个从工业时代向信息时代加速转型的大变革时代。全球物质经济发…

笛卡尔与人工智能:“我思故我在”作为智能测试标准的可能性

来源:科学经济社会本文载于《科学经济社会》2022年第40卷第3期第38~55页作者简介:张伟特,海德堡大学哲学博士,清华大学新雅书院/哲学系助理教授,博士生导师,仲英青年学者,主要从事西方近代哲学&…

DeepMind 新作:AI 系统实现以人为中心的分配机制设计

来源:集智俱乐部作者:高晋宇编辑:邓一雪导语如何在经济和社会系统中重新分配资源?例如,一群人决定集中资金进行投资,获得回报后该如何分配收益?简单的平均分配看起来不太公平,但按照…

多Agent 深度强化学习综述

多Agent 深度强化学习综述 人工智能技术与咨询 来源:《自动化学报》,作者梁星星等 摘 要 近年来,深度强化学习(Deep reinforcement learning,DRL) 在诸多复杂序贯决策问题中取得巨大突破.由于融合了深度学习强大的表征能力和强化学习有效的策略搜索能…

Science揭露奠基研究最大骗局:被引2300多次,重量级造假论文误导学界16年

来源:新智元谁能想到,一篇被引2300多次的Nature论文,竟涉嫌造假!更严重的是,这篇开创性论文竟误导了全世界阿尔茨海默病研究长达16年。一篇被引2300多次的Nature论文,竟涉嫌造假。影响有多恶劣?…

元学习研究综述

元学习研究综述 人工智能技术与咨询 来源:《电信科学》,作者朱应钊等 摘要 深度学习和强化学习严重受限于小样本数据集,容易发生过拟合,无法实现类似于人类强泛化性的学习能力。元学习为此应运而生,以累积经验的方…

【院士思维】张亚勤:我们正在让自动驾驶变成现实

来源:贝德尔的ICT世界7月19日,IEEE 2022网络、计算机和通信国际研讨会(ISNCC2022)首次落地中国,围绕“Touch the Future数字未来之路”主题,来自中国、美国、英国、意大利、法国、突尼斯、印度、日本、俄罗…

基于Grad-CAM与KL损失的SSD目标检测算法

基于Grad-CAM与KL损失的SSD目标检测算法 人工智能技术与咨询 来源:《电子学报》,作者侯庆山等 摘 要: 鉴于Single Shot Multibox Detector (SSD)算法对中小目标检测时会出现漏检甚至错检的情况,提出一种改进的SSD目标检测算法&…

图灵奖得主 Adi Shamir最新理论,揭秘对抗性样本奥秘

来源: 智源社区导读:为什么模型会将「猫」识别成「牛油果酱」,将「猪」识别成「飞机」?要回答这个问题,就涉及到对抗性样本(Adversarial examples)。对抗性样本指在原始样本添加一些人眼无法察觉…

基于多视角融合的夜间无人车三维目标检测

基于多视角融合的夜间无人车三维目标检测 人工智能技术与咨询 来源:《应用光学》,作者王宇岚等 摘 要:为了提高无人车在夜间情况下对周围环境的物体识别能力,提出一种基于多视角通道融合网络的无人车夜间三维目标检测方法。引入…

清华邓志东:城市智能路网新基建催生路端世界级企业

2022年7月16日,中国指挥与控制学会(CICC)城市大脑专业委会在北京正式成立。在成立大会上也举办了城市大脑前沿学术研讨会,新当选的专委会顾问、主任委员、副主任委员发表了最新研究成果和观点,对城市大脑的未来发展进行…

机器学习的可解释性

机器学习的可解释性 人工智能技术与咨询 来源:《计算机研究与发展》,作者陈珂锐等 摘 要 近年来,机器学习发展迅速,尤其是深度学习在图像、声音、自然语言处理等领域取得卓越成效.机器学习算法的表示能力大幅度提高&#xff0c…

对话加拿大工程院于非院士:寻找 AI 领域的「香农定理」

来源:AI科技评论作者:黄楠、青暮编辑:陈彩娴我相信智能是一种自然现象,就像岩石滚动和冰雪融化般自然的现象。——摘自于非著作《智能简史——从大爆炸到元宇宙》。当科学家把一些菟丝子移植到几株营养状态不同的山楂树上时&#…

工业人工智能及应用研究现状及展望

工业人工智能及应用研究现状及展望 人工智能技术与咨询 来源:《自动化学报》,作者李杰等 摘 要 工业4.0 将工业制造流程以及产品质量优化从以前依照经验和观察进行判断转变为以事实为基础,通过分析数据进而挖掘潜在价值的完整智能系统.人工智能技术的…

机器学习理论基础炼丹总结

来源:Datawhale机器学习发展迅猛,但对理论知识的理解却跟不上?本文将给出一名数据科学家的反思,他通过效用矩阵梳理了模型的实验结果和基础理论的关系,并探讨机器学习各个子领域的进展。引入知其然,知其所以…

基于改进SSD的车辆小目标检测方法

基于改进SSD的车辆小目标检测方法 人工智能技术与咨询 来源:《应用光学》,作者李小宁等 摘 要:地面车辆目标检测问题中由于目标尺寸较小,目标外观信息较少,且易受背景干扰等的原因,较难精确检测到目标。…

AlphaFold预测了几乎所有已知蛋白质!涵盖100万物种2.14亿结构,数据集开放免费用...

来源:量子位 | 公众号 QbitAI明敏 发自 凹非寺全世界几乎所有已知蛋白质结构,都被AlphaFold预测出来了!在预测出人类98.2%蛋白质一年后,DeepMind的重磅成果再次引爆学术界。包括植物、细菌、真菌在内的100万个物种、2.14亿个蛋白质…

融合零样本学习和小样本学习的弱监督学习方法综述

融合零样本学习和小样本学习的弱监督学习方法综述 人工智能技术与咨询 来源:《系统工程与电子技术》,作者潘崇煜等 摘 要: 深度学习模型严重依赖于大量人工标注的数据,使得其在数据缺乏的特殊领域内应用严重受限。面对数据缺乏等现实挑战&…