【院士思维】张亚勤:我们正在让自动驾驶变成现实

3942c174b01b73b7a4fd26ff84510da0.jpeg

来源:贝德尔的ICT世界

7月19日,IEEE 2022网络、计算机和通信国际研讨会(ISNCC2022)首次落地中国,围绕“Touch the Future数字未来之路”主题,来自中国、美国、英国、意大利、法国、突尼斯、印度、日本、俄罗斯等28个国家的知名科学家、科研人员,就网络、计算机与通信领域进行了29场线上活动。中国工程院院士、清华大学智能产业研究院(AIR)院长、IEEE Fellow张亚勤在开幕式上演讲。

以下是演讲全文:

早上好,下午好,晚上好。无论你在哪里,都向你问好。我是来自清华大学的张亚勤。我今天要讲的是智慧交通领域的自动驾驶。我们知道,过去几年来,自动驾驶已然成为最激动人心、最令人关注的技术之一。今天我想花15到20分钟来谈谈自动驾驶的一些背景,特别是与智慧城市和智慧交通相关的内容,比如Vehicle to Everything技术,简称V2X。

人工智能确实为新技术、新产业创造了前所未有的历史机遇。最先受到它影响的实际上正是IT产业本身:新算法、新软件、新芯片、新技术堆栈、数据中心……当然还有很多新产品和新服务。然后,它又变革了我们既有的传统产业,比如医疗业、金融业、教育业和制造业等。最重要的是,它还创造了新的产业,自动驾驶当然就是其中一个。

汽车产业已经发展了100多年,无论是从技术 、供应链还是从商业模式来看,它都已经是一个非常成熟的产业。它正经历这一百多年来的第一次重大变革,这是一次真正意义上的脱胎换骨。这次变革可以用四个字母来概括:CASE。联网化(Connectivity)、自动化(Autonomy)、信息共享(Sharing)和电动化(Electrification)。我认为,自动驾驶无疑给该产业带来了最大的影响,它也是我们今天要探讨的主题。

那么,它带来的重大社会效益和经济效益有哪些呢?

人们常常问我,你为什么要把人们从驾车的乐趣中“解放”出来?因为它首要的优点是安全性高。有90%以上的车祸,尤其是致命的交通事故,都是由人为失误酿成的。所以,把人从驾驶中解放出来,当然就有助于消除或最大限度地减少这类失误。它的第二个优点是效率高。我们平均每天要花60分钟甚至更长的时间在车里,用于驾驶或是寻找停车位,简而言之就是在“交通”上花的时间。而自动驾驶能为你省下这些时间,我们就可以用来做其他的事情。当然了,这也将会创造巨大的经济效益。

百度和麦肯锡最新的报告显示,在不到10年后的2030年,新产业创造的经济规模将达1.5万亿至1.8万亿美元之间。这还只是单单从全球的驾乘和机动车产业来考察。在我看来,自动驾驶是一种集成了众多不同要素的技术。它具备感知、规划和控制、模拟、精确到厘米级的高清路线规划等能力,还涵盖了各种软件、新型的硬件堆栈联网功能等。最重要的是,除了必须集成这种相似的东西,你还得有安全性,容错率极低。因此,就其挑战性和复杂度而言,我认为自动驾驶可谓终极的人工智能系统。但同时,我相信这个难关是可以攻克的。我们可以把一个特别复杂的问题分解成一个个可以逐一击破的小问题。

那么,在实现自动驾驶的过程中,我们必须解决的关键问题、必须要做的关键决策有哪些呢?这分为两大类:市场力量和非市场力量。市场力量包括技术、蓝图——如何实现我们的目标、以及如何构建生态系统等。非市场力量包括政策、法规、伦理道德、隐私和其他的人为因素。

那么今天,我们将讨论其中的一些技术,特别是V2X方面的技术。当然自动驾驶中包含其他的技术问题,如要采用什么样的传感器?雷达还是视觉?实现路径是什么呢?是要像特斯拉和Mobileye一样,依次经历第二级、第三级、逐步进展到第四级,还是像谷歌Waymo和我们的百度一样,直接跳到第四级研制无人驾驶汽车?还有它将是一个开源系统还是封闭系统呢?它是类似安卓系统还是像iOS系统呢?谁将赢得这场角逐呢?是传统的OEM汽车制造商,还是一些新兴势力、新兴的电动汽车制造商,还是科技巨头呢?这里边有很多有趣的问题。但是今天,鉴于我们要探讨的是智慧城市和智慧交通,我们只关注一个主题,那就是V2X技术。

V2X技术的实现可分为三个循序渐进的步骤。第一个步骤很简单,就是协同感知。它就是简单地将道路和交通数据与你在车里看到的信息整合在一起。第二步是协同规划。协同规划意味着在掌握了这些信息后,就能做出路线规划决策,以实现更高的效率。下一步当然就是系统、全面的道路设施设计,可以从城市全局的角度最大限度地提升交通系统的效率。人们通常在自动驾驶的模型设计这个议题上有很多疑问:它应该更多地基于单车智能还是需要V2X数据智能的协助?哪个更重要?显然,车辆本身需要非常智能化。要把人们从驾驶中解放出来,当然需要有最基本的自动智能去实现它。我也相信V2X技术、道路信息、交通信息以及整个城市设施给予我们的种种信息,对于实现更高水平的安全性是至关重要的。

在道路安全方面,有一些极端情况:比如恶劣的天气影响了视线;比如发生了拥堵或事故;还有其他的问题,比如在你看不到的盲区、突然出现的并线车辆以及其他难以预见的因素。如果只有单车智能,那整体的视觉感知、数据和感知可能就会非常局限。在这种情况下,V2X信息就可以提供很多帮助。它可以将全局的交通信息和路侧设备感知到的信息,以及单车自身全部范围内的信息和其他的危险信息相结合。本质上,简单的说就是,你可以一边自己接收道路信息和交通信号灯信息,城市基础设施同时也为你补充额外的、你无法从车辆上感知到的信息。

此外,我们用到的很多功能、很多深度学习算法,都是基于数据的。所以,拥有的数据越多,得出的算法就越好。这里是一个无保护左转路口的例子,你可以从模拟器上看到其中的信息。左边是只使用单车感知的系统,右边是车载感知关闭而仅使用路侧感知系统的情况,这两套不同的传感方式,都能够保障主车顺利通过路口。

ca17cd4e5d2e3e953b9e78724f72ee13.jpeg

这是另一个例子,一辆救护车在毫无预兆的情况下突然驶来。看到左边(的画面),我们没有路侧感知信息。会车时,你得紧急刹车,这个体验就很不好。看到右手边(的画面),使用V2X技术可以预知这辆救护车的驶来,并及时提醒司机提前刹停或减速,避让那辆救护车。

各国政府都积极鼓励部署V2X技术,包括美国、欧洲、中国等。在政策、试验场地和部署方面,中国处于遥遥领先的地位。目前,已有“5+2”个路网被指定为示范区,将来还将有更多投入使用。C-V2X是一种用作基础设施通信协议的主要技术。百度“阿波罗”(Apollo)就是一个特别的例子。“阿波罗”是百度从2017年开始开发的开源平台。这一开源商业平台最初主要是用于单车的,但现在,尤其是过去3年来,它新增了很多V2X功能。它在全球拥有200多个合作伙伴,进行着V2X技术方面最前沿的工作:技术研发、部署和试验。清华大学与百度阿波罗开展了合作。大约一年前,我们启动了Apollo Air项目。充分利用路侧智能的潜力探索车路协同领域的技术无 人区。此外,就像汽车的自动驾驶分级一样,我们也在尝试定义路侧智能的分级标准。即使车辆本身没有自动智能,我们也可以借助路侧、交通、道路和基础设施的感知和算法,协助没有自动驾驶能力的汽车导航。

当然,为了更好地实现自动驾驶,我们还是要把单车智能和路侧智能结合起来。我们已在多个城市部署了这一系统,主要是在北京的亦庄高级别自动驾驶示范区,这是北京市政府为试验各类V2X技术而设置的开放式试验场地。为了证明V2X对驾驶安全的提升,我们设计了一个数学模型来评测两条路线在不同交互场景中的表现。其中一条路线仅使用了单车智能,另一条路线运用了V2X、车路协同(VICAD)信息。然后我们再从车辆交互模型、交通模型去调整车辆驾驶模式。然后再通过安全评价模型去考察V2X技术实际上对车辆整体的安全性有多大提升。P(AD)表示单车自动驾驶的事故率,P(VIDCAD)表示运用了V2X技术后的事故率。我们通过开发这一模型,得出了一组数据。我们也在亦庄用真实的车辆和V2X技术来协助验证了这一模型的效果。我们可以看到,在三个不同的场景中,V2X技术的表现是最出色的。它显著提升了安全性。尤其是在无保护的左转路口,这是普通车辆驾驶最头疼的问题。你看不到道路另一侧——无论是与道路水平一侧还是垂直一侧的交通状况。在这种情况下,V2X技术就能提供惊人的超过10倍数量级的安全性。这些还只是初步的成果。我们在亦庄部署了很多车辆,我们也在改进和迭代安全模型,以期取得更重大的成果。

0d6be98d935364b9cbbc437c399817dc.jpeg

这里有一个视频片段,它展示了我们的一部分工作、我们在亦庄部署的车辆以及供我们用V2X技术提升安全性的一些场景,这也是在实际的交通中会遇到的场景。这就是视频片段的内容。抱歉,它没有英文版本。但我希望各位能领会其中的大意。视频中截选的不同交通场景,都是从无数真实场景中提取出来的。其次,我们既有真实的车辆驾驶数据,也有基于算法的理论模型。正是这一切让V2X技术和整个自动驾驶体验变得更加安全、更加令人信服。

我的(演讲)时间快到了。我想再次强调,自动驾驶是过去几年间最引人注目的技术进步之一。多年来,自动驾驶汽车一直是一个梦想。有史以来第一次,随着技术的进步,随着新功能的诞生,我们有了新的算法、有了我之前提到的CASE,我们正在让自动驾驶变成现实。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

59fa2e318683ff635ea77b75c5a03f52.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481774.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Grad-CAM与KL损失的SSD目标检测算法

基于Grad-CAM与KL损失的SSD目标检测算法 人工智能技术与咨询 来源:《电子学报》,作者侯庆山等 摘 要: 鉴于Single Shot Multibox Detector (SSD)算法对中小目标检测时会出现漏检甚至错检的情况,提出一种改进的SSD目标检测算法&…

图灵奖得主 Adi Shamir最新理论,揭秘对抗性样本奥秘

来源: 智源社区导读:为什么模型会将「猫」识别成「牛油果酱」,将「猪」识别成「飞机」?要回答这个问题,就涉及到对抗性样本(Adversarial examples)。对抗性样本指在原始样本添加一些人眼无法察觉…

基于多视角融合的夜间无人车三维目标检测

基于多视角融合的夜间无人车三维目标检测 人工智能技术与咨询 来源:《应用光学》,作者王宇岚等 摘 要:为了提高无人车在夜间情况下对周围环境的物体识别能力,提出一种基于多视角通道融合网络的无人车夜间三维目标检测方法。引入…

清华邓志东:城市智能路网新基建催生路端世界级企业

2022年7月16日,中国指挥与控制学会(CICC)城市大脑专业委会在北京正式成立。在成立大会上也举办了城市大脑前沿学术研讨会,新当选的专委会顾问、主任委员、副主任委员发表了最新研究成果和观点,对城市大脑的未来发展进行…

机器学习的可解释性

机器学习的可解释性 人工智能技术与咨询 来源:《计算机研究与发展》,作者陈珂锐等 摘 要 近年来,机器学习发展迅速,尤其是深度学习在图像、声音、自然语言处理等领域取得卓越成效.机器学习算法的表示能力大幅度提高&#xff0c…

对话加拿大工程院于非院士:寻找 AI 领域的「香农定理」

来源:AI科技评论作者:黄楠、青暮编辑:陈彩娴我相信智能是一种自然现象,就像岩石滚动和冰雪融化般自然的现象。——摘自于非著作《智能简史——从大爆炸到元宇宙》。当科学家把一些菟丝子移植到几株营养状态不同的山楂树上时&#…

工业人工智能及应用研究现状及展望

工业人工智能及应用研究现状及展望 人工智能技术与咨询 来源:《自动化学报》,作者李杰等 摘 要 工业4.0 将工业制造流程以及产品质量优化从以前依照经验和观察进行判断转变为以事实为基础,通过分析数据进而挖掘潜在价值的完整智能系统.人工智能技术的…

机器学习理论基础炼丹总结

来源:Datawhale机器学习发展迅猛,但对理论知识的理解却跟不上?本文将给出一名数据科学家的反思,他通过效用矩阵梳理了模型的实验结果和基础理论的关系,并探讨机器学习各个子领域的进展。引入知其然,知其所以…

基于改进SSD的车辆小目标检测方法

基于改进SSD的车辆小目标检测方法 人工智能技术与咨询 来源:《应用光学》,作者李小宁等 摘 要:地面车辆目标检测问题中由于目标尺寸较小,目标外观信息较少,且易受背景干扰等的原因,较难精确检测到目标。…

AlphaFold预测了几乎所有已知蛋白质!涵盖100万物种2.14亿结构,数据集开放免费用...

来源:量子位 | 公众号 QbitAI明敏 发自 凹非寺全世界几乎所有已知蛋白质结构,都被AlphaFold预测出来了!在预测出人类98.2%蛋白质一年后,DeepMind的重磅成果再次引爆学术界。包括植物、细菌、真菌在内的100万个物种、2.14亿个蛋白质…

融合零样本学习和小样本学习的弱监督学习方法综述

融合零样本学习和小样本学习的弱监督学习方法综述 人工智能技术与咨询 来源:《系统工程与电子技术》,作者潘崇煜等 摘 要: 深度学习模型严重依赖于大量人工标注的数据,使得其在数据缺乏的特殊领域内应用严重受限。面对数据缺乏等现实挑战&…

什么是文档智能?微软亚研最新《文档智能:数据集、模型和应用》综述

来源:专知微软亚洲研究院最新《文档智能:数据集、模型和应用》综述文档智能是指通过计算机进行自动阅读、理解以及分析商业文档的过程,是自然语言处理和计算机视觉交叉领域的一个重要研究方向。近年来,深度学习技术的普及极大地推动了文档智能领域的发展…

一种基于伪标签半监督学习的小样本调制识别算法

一种基于伪标签半监督学习的小样本调制识别算法 人工智能技术与咨询 来源:《西北工业大学学报》,作者史蕴豪等 摘 要:针对有标签样本较少条件下的通信信号调制识别问题,提出了一种基于伪标签半监督学习技术的小样本调制方式分类…

Intelligent Computing首期论文发表了哪些前沿研究?

来源:之江实验室Intelligent Computing创刊首期论文中,牛津大学计算机系主任、谷歌DeepMind-Oxford合作负责人Michael Wooldridge教授发表了关于人工智能未来发展趋势和关键技术的前瞻性观点论文;蚁群智能创始人、比利时布鲁塞尔自由大学Marc…

基于深度卷积神经网络的目标检测研究综述

基于深度卷积神经网络的目标检测研究综述 人工智能技术与咨询 来自《光学精密工程》 ,作者范丽丽等 摘要:作为计算机视觉中的基本视觉识别问题,目标检测在过去的几十年中得到了广泛地研究。目标检测旨在给定图像中找到具有准确定位的特定对…

Yann LeCun开怼谷歌研究:目标传播早就有了,你们创新在哪里?

来源:机器之心在昨日的学术圈,图灵奖得主Yann LeCun对谷歌的一项研究发起了质疑。前段时间,谷歌 AI在其新研究《LocoProp: Enhancing BackProp via Local Loss Optimization》中提出了一种用于多层神经网络的通用层级损失构造框架LocoProp&am…

基于深度学习的场景分割算法研究综述

基于深度学习的场景分割算法研究综述 人工智能技术与咨询 来自《计算机研究与发展》 ,作者张 蕊等 摘 要 场景分割的目标是判断场景图像中每个像素的类别.场景分割是计算机视觉领域重要的基本问题之一,对场景图像的分析和理解具有重要意义,…

DeepMind 首席科学家 Oriol Vinyals 最新访谈:通用 AI 的未来是强交互式元学习

整理:李梅编辑:陈彩娴自 2016 年 AlphaGo 在围棋中击败人类以来,DeepMind 的科学家一直致力于探索强大的通用人工智能算法,Oriol Vinyals 就是其中之一。Vinyals 于 2016 年加入 DeepMind,目前任首席科学家&#xff0c…

卷积神经网络结构优化综述

卷积神经网络结构优化综述 人工智能技术与咨询 来源:《自动化学报》 ,作者林景栋等 摘 要 近年来,卷积神经网络(Convolutional neural network,CNNs)在计算机视觉、自然语言处理、语音识别等领域取得了突飞猛进的发展,其强大的特征学习能力引起了国内…

梅勒妮·米切尔 | 复杂性科学将如何颠覆我们对世界的认知?

来源:哲学人作者:梅勒妮米切尔(Melanie Mitchell) 波特兰州立大学计算机科学教授,圣塔菲研究所(Santa Fe Institute)外聘教授和科学委员会成员1894年,物理学家、诺贝尔奖得主阿尔伯…