写代码调 Bug,OpenAI 发布最强 AI 对话系统 ChatGPT!

a9fd86fda3e4c5b8934d2630c8967f81.png

来源:CSDN(ID:CSDNnews)

整理:苏宓

GPT-3 发布的两年后,我们没等来它的亲弟弟 GPT-4,而是在今天亲眼见证了 OpenAI 带来了一种全新的 AI 聊天机器人——ChatGPT,也可以称之为是 GPT-3 家族里面的亲戚,它不仅可以解释代码、编写情景喜剧脚本,也可以为用户的查询提供对话式回答,而且回答几乎能够满足网友的”小心思“。

目前,ChatGPT 处于测试阶段(chat.openai.com),只要有 OpenAI 账户就可以免费使用。万万没想到,此超级对话模型一经开放,很多人便深陷其中,无法自拔。就连 OpenAI 背后的投资者马斯克不忘调侃一句,”很多人疯狂地陷入了 ChatGPT 循环中。“

aaa4dc9915f25e9dd3b07957ca682a13.jpeg

86f8d79c0f88f43dfed22b92b9de2daa.jpeg

ChatGPT 的背后

对此,我们不禁好奇,ChatGPT 到底有什么样的魔力,吸引这么多人去尝试?它与 GPT-3 又有什么不同之处?

根据 OpenAI 官方介绍,与 GPT-3 最大的不同应该就是 ChatGPT 提供了一个用户友好的对话界面,并且非常有道德,即可以强烈限制一些有害的输出,如暴力、脏话等不当的请求。

ChatGPT 是 InstructGPT 的兄弟模型,它被训练为在提示中遵循指令并提供详细的响应。

之前了解过 OpenAI 的工程师们,想必对  InstructGPT 还有印象。今年年初,OpenAI 为了好好调教 GPT-3,便给它带来了”调教师“—— InstructGPT,它采用了”从人类反馈中强化学习“(RLHF)来训练这个模型,可以让彼时的 GPT-3 输出的更为准确。

最新的 ChatGPT 使用的方法与 InstructGPT 相同,也是使用了 RLHF,有些不同的地方主要体现在数据收集设置上。

对此,OpenAI解释道,”ChatGPT 使用监督微调训练了一个初始模型:人类 AI 培训师提供对话,他们在对话中扮演双方--用户和 AI 助手。AI培训师通过由模型生成的建议,以帮助 AI 不断调整回复的内容。“

当然,为了创建一个用于强化学习的奖励模型,OpenAI 也需要收集比较数据,其中包括两个或更多按质量排名的模型回复。为了收集这些数据,OpenAI 收集了 AI 培训师与聊天机器人的对话,并随机选择了一个模型编写的消息,抽查了几个备选的回复,再让 AI 培训师对这些回复进行排名。此外,利用这些奖励模型,这项研究使用近似策略优化算法对模型进行微调,并对这个过程进行了多次迭代。

bd8eb0e4eb055b68a4f5b2987a2550ed.jpeg

根据官方介绍,ChatGPT 是对 GPT-3.5 系列中的一个模型微调而成,该模型在 2022 年初完成了训练。值得注意的是,ChatGPT 和 GPT-3.5 是在 Azure AI 超级计算基础设施上训练的。

551f2821eeda34690e31fa982595adb2.jpeg

百态横生的 ChatGPT,玩出新花样

到目前为止,很多人对 ChatGPT 进行了各种测试,发现了各种潜在的用途。比如说:

它可以是程序员得力小助手,帮助开发者解决编码问题:

176bc353142e22fd3c823c53a98bed4b.jpeg

就像这样:

d663ba9c06b8d35596660da971e33682.jpeg

甚至还能解释冒泡排序算法:

2e5769adf9a1040df835a57bbb7845e8.jpeg

它也是很好的调试小伙伴,程序员再也不用害怕 Debug 了?

71af6f610be81d4c4f95e83bbbb1f850.jpeg

它也能充当诗人。当问及”能否写一首关于埃隆-马斯克接管 Twitter 的押韵诗?“时,它能流畅自然地分享道(不知大家能打几分):

埃隆·马斯克现在至高无上

在 Twitter,他是终极国王

他拇指一弹就发推文

他的追随者想要屈服

充满想法和计划的头脑

他总是大步前进

......

edcbea14691f02285f7b7b28fbf0a385.jpeg

对艺术家也有一定的启发:

4636bb886eb82549d3fca4f1f5a78d27.jpeg

还能进入影视圈,写写剧情脚本:

a385e21d2f6461167dba7e744f69f455.jpeg

另外,它也能”一本正经“地解释各种科学概念,比如说”热力学“:

037e733d8f8671baf2e0ac07a3e551e4.jpeg

甚至它还能写一篇学术论文。当然在学术圈的论文上面,还是不建议大家使用的,或许接下来 ChatGPT 也会成为高校老师们颇为头疼的产品工具。

0b340285e2e4d64a50e430c0d3587ed9.jpeg

除此之外,根据 OpenAI 分享的官方示例中,其表示还能为日常提供一些实质性的建议。

用户:帮我写一封简短的说明,向我的邻居介绍自己。

ChatGPT:

你好呀,

我的名字是 [你的名字],我刚搬到隔壁。我想伸出手来介绍自己。我期待着认识你和附近的人。如果您有任何需要或只是想聊天,请随时过来或给我打电话。

最好的,
[你的名字]

用户:你能让它更正式吗?

ChatGPT:

亲爱的邻居,

我写信是为了自我介绍。我的名字是 [你的名字],我最近搬到了隔壁。我想花点时间伸出手打个招呼。我期待着结识您和附近地区。

如果有什么我可以做的好邻居,或者如果您有任何需要,请随时告诉我。我很乐意尽我所能提供帮助。

此致,[你的名字]

用户:你能帮我寄吗?

ChatGPT:

很抱歉,我是一个基于文本的 AI 助手,没有能力为您发送一封实体信件。我只能提供关于写什么的建议和建议。您可以接受该建议并自己发送这封信。

可以说上知天文下知地理,前能写代码,后能编剧本,ChatGPT 比 GPT-3 强得不止这些。

e38798ee1cc98ee0775b5d6a5853e9c9.jpeg

局限性与挑战

当然,现实来看,ChatGPT 毕竟依然是由人训练出来的,其虽然智能,但也依然避不开一些无厘头以及错误。

在 Twitter 上,当计算生物学教授CarlBergstrom要求 ChatGPT 写一篇关于他生活的维基百科条目时,ChatGPT沉着冷静地做到了这一点,但不妨碍它写的内容里面包含了几个完全虚假的传记细节。

ce778fa775f2e9c3a7564fce05bcfa08.jpeg

83dade830fbb5510756ae1548f8b821a.jpeg

针对这种错误,OpenAI 也在官方公告中强调,当前的 ChatGPT 存在一定的局限性,其直言「想要完全解决这个问题是非常有挑战性的」,因为:

 (1) 在 RL 训练期间,目前没有真实世界的数据来源;

(2) 模型被训练得更加谨慎,导致它拒绝回答它可以正确回答的问题;

(3) 监督训练误导了模型,因为理想的答案取决于模型知道什么,而不是人类演示者知道什么。

ChatGPT 对输入措辞的调整或多次尝试同一”提示“很敏感。例如,给定一个问题的措辞,模型可以声称不知道答案,但只要对问题的措辞稍加修改,它就可以给出正确回答。

该模型的回答内容往往过分啰嗦,并过度使用某些短语。例如重申它是由 OpenAI 训练的语言模型。这些问题来自于训练数据的偏差(训练者更喜欢看起来更全面的长篇答案)和众所周知的过度优化问题。

理想情况下,当用户提供了一个模棱两可的问题时,模型会提出质疑。然而与之相反的现实是,如今的模型往往会猜测用户的意图。

对此,OpenAi 解释称,「虽然我们已经努力使模型拒绝不适当的请求,但它有时会对有害的指令作出回应或给出有偏见的回答。我们正在使用 Moderation  API 来警告或阻止某些类型的不安全内容,但我们预计它目前不一定会立即见效。因此,我们渴望收集用户的反馈,以帮助我们正在进行的工作,改善这个系统。」

a68acca50a58e7c189640e0882aa3d9f.jpeg

将向 Google 搜索发起挑战?

尽管如此,不可否认的是,ChatGPT 的输出质量似乎比之前 GPT-3 模型有了显著的改进,而且回答的内容覆盖多维度,甚至在一定程度上,可以直面”搜索引擎“与”问答社区“。

为此,也有网友将 Google 和 ChatGPT 进行了对比:

487765284f1ef57d9775813e37e6b7ea.jpeg

其分别在 Google 搜索和 ChatGPT 中提出了同一个问题:

8015f7e120b059896c53abebf9561dd2.jpeg

11cc00f99df90623c1616b3985a1a474.jpeg

几番比对下来,这位网友表示,Google 的搜索结果都可以不用贴上来了,因为这些问题在它的平台上没有什么好的结果。与此同时,其附上了来自 ChatGPT 详细的结果。

a72c8cbd2dfd66d84c09cd840ffd582c.jpeg

虽然对于这样的结果,来自 Google 母公司 Alphabet 的一位工程师 @hncel 解释道:

我在 Alphabet 工作,最近我去参加了一个内部技术讲座,是关于在谷歌部署这样的大型语言模型。作为免责声明,我首先要说明这不是我的专业领域,我只是参加了这个技术讲座,因为它听起来很有趣。

像 GPT 这样的大型语言模型是谷歌在 ML 维度主要研究的领域之一,而且有大量相当明显的应用,它们可以被用来回答查询、索引信息等。

在谷歌,有一个巨大的预算,用于配备人员来研究这些类型的模型并进行实际的训练,这非常昂贵,因为需要大量的计算能力来训练这些超级巨大的语言模型。然而,我从讲座中了解到,在谷歌最大的产品(如搜索、Gmail)中实际使用这些语言模型的经济性还不太成熟。放置一个演示,让感兴趣的人们玩玩是一回事,但如果考虑到服务成本、增加的延迟以及像谷歌搜索本身收入已经接近无限小的事实,试图将它深入地整合到一个每天提供数十亿次请求的系统中是另一回事。我想我记得演讲者说过这样的话:在将这样的模型整合到搜索等产品中之前,他们至少要将成本降低 10 倍。

在未来几年,10 倍甚至 100 倍的改进显然是一个可实现的目标,所以我认为这样的技术将在未来几年出现。

就现下而言,ChatGPT 的出现,是否会在未来短短几年内吸引大量使用 Google 搜索这类工具的开发者、创作者、设计者们,或许还需要看看 ChatGPT 正式上线之后的效果,我们也将拭目以待。

参考:

https://openai.com/blog/chatgpt/

https://news.ycombinator.com/item?id=33817682

https://www.theverge.com/23488017/openai-chatbot-chatgpt-ai-examples-web-demo

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

c5b18fe3c69fcf6def2b923b58b11c75.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481344.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI 大模型开源之困:垄断、围墙与算力之殇

从新兴技术转变为AI基础设施,大模型开源很重要,但也很难。来源:AI科技评论作者:李梅编辑:陈彩娴2020年6月,OpenAI发布GPT-3,其千亿参数的规模和惊人的语言处理能力曾给国内AI界带来极大的震动。…

神经符号 AI,或为下一代 AIoT 的新解法

来源:AI科技评论作者:黄楠编辑:陈彩娴11 月 22 日,2023 年度 IEEE Fellow 名单公布,入选者约1/3为华人学者。IEEE Fellow 被称为全球电子电气工程领域的最高荣誉,每年当选人数不足整个 IEEE 协会的千分之一…

ChatGPT会取代搜索引擎吗

来源:AI科技大本营作者:张俊林本文经作者授权发布,原文地址:https://zhuanlan.zhihu.com/p/589533490作为智能对话系统,ChatGPT最近两天爆火,都火出技术圈了,网上到处都在转ChatGPT相关的内容和…

菲尔兹奖得主再次突破数论难题:多少整数能写成2个有理数立方和?结论直接影响“千禧难题”之七...

Pine 萧箫 发自 凹非寺量子位 | 公众号 QbitAI困扰数学界几个世纪的难题,终于有重大突破了!这个难题如果被解决,会直接影响到一个著名未解之谜的求解——贝赫和斯维讷通-戴尔猜想。贝赫和斯维讷通-戴尔猜想是数学界顶尖的7大千禧难题之一&…

从城市到国家:多学科视角的城市复杂系统

摘要与城市一样,国家在很大程度上是人造的系统。尽管它们在地点和规模上有所不同,但城市和国家都是可识别的单位,具有独特的特征,是独立的(不能被分解成部分而不失去其特征或个性的系统)。一个国家的历史与…

杀死1500只动物?马斯克的脑机接口公司被查!已宣布半年内进行人体试验

来源:每日经济新闻记者:郑雨航编辑:段炼 兰素英 杜波 杜恒峰校对:王月龙当地时间12月5日,路透社报道称,因涉嫌侵犯动物福利的违规行为,马斯克的脑机接口公司Neuralink正面临美国联邦部门的调查。…

人民日报:在集成电路基础研究中奋力攀登

来源:芯榜Pro转载自人民日报党的十八大以来,一大批70后、80后、90后青年科研人员脱颖而出,日益成为科技创新的生力军、主力军。党的二十大报告提出:“必须坚持科技是第一生产力、人才是第一资源、创新是第一动力,深入实…

骆清铭院士:给“大脑”绘制一个清晰可见的“地图”

来源:学习时报作者简介:骆清铭,中国科学院院士,海南大学校长,华中科技大学苏州脑空间信息研究院首席科学家。骆清铭团队研发的显微光学切片断层成像系统(MOST)系列技术,为实现单神经…

AI大神LeCun深度学习公开课来啦!4万字干货笔记(附干货笔记下载)

来源:Datawhatle喜欢深度学习?最好的方法就是在线课程。这里推荐图灵奖得主、纽约大学教授Yann LeCun主讲的在线课程。该课程最重要的优点是,它集成了LeCun对深度学习的思考。通过这门课,学习者可以了解深度学习的现状&#xff0c…

这种由数学描述的现象,在自然中终于找到了

#创作团队:原文作者:Raphael Sarfati(科罗拉多州大学波尔多分校博士后副研究员)编译:Gaviota排版:雯雯#参考来源:https://theconversation.com/synchrony-with-chaos-blinking-lights-of-a-fire…

互联网的未来:为什么我们需要 HTTP/3?

来源:SDNLAB*本文系SDNLAB编译自Ably博客自1997年HTTP/1.1标准化以来,一直是首选的应用层协议。多年来,为了跟上互联网的发展和网络上交换内容的多样性,HTTP 不得不进行升级。本文展示了 HTTP 协议的演变,深入探讨了 H…

评估深度学习模型以预测表观基因组概况

编辑 | 萝卜皮深度学习已经能够成功预测 DNA 序列的表观基因组图谱。大多数方法将此任务定义为二元分类,依赖峰值调用者来定义功能活动。最近,出现了定量模型来直接预测实验覆盖值作为回归。随着具有不同架构和训练配置的新模型不断出现,由于…

DeepMind携AlphaCode登Science封面,写代码能力不输程序员

来源:机器之心编辑:小舟、陈萍AI 卷到程序员自己身上了。今年年初,DeepMind 发布了基于 Transformer 的新模型 AlphaCode,该模型实现了大规模代码生成。现在,AlphaCode 又在《Science》上发表了新论文,研究…

微软 CTO 断言,明年是AI社区最激动人心的一年,网友:GPT-4 要来了?

来源:AI前线 整理:褚杏娟 核子可乐GPT 不出,AI 万古如长夜。“对于人工智能,2022 年是有史以来最激动人心的一年。”微软首席技术官 Scott Stein 在近日的分享中说道,但他还自信地表示,“2023 年将是 AI 社…

以“开放同行评议”推动学术发展

来源:《中国社会科学报》图片来源:CFP同行评议是指同一领域的专家学者评议研究人员稿件,确定学术论文是否适合发表、提出意见的过程。同行评议一直是学术期刊出版的重要基石。然而,学术界关于同行评议中的偏见和不利影响的争论&am…

2022年,人工智能领域发展的七大趋势有哪些?

来源:福布斯官网美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在…

DeepMind VS Meta:实现纳什均衡理性最优解,还是多人非零和博弈算法更强大?

大数据文摘转载自AI科技大本营编译 & 整理:杨阳记得豆瓣高分电影《美丽心灵》中的约翰纳什吗?作为获得诺贝尔经济学奖的数学家,纳什在博弈论、微分几何学,以及偏微分方程等各个领域都作出卓越贡献。为表彰他在非合作博弈理论中…

【萌味】小夕说,不了解动态空间增长的程序喵都是假喵(上)

小提示:小夕会将小屋的最新动态更新到小屋的布告栏哦,口令是【nb】(口令在订阅号主界面直接回复即可使用)。 小夕学了数据结构后,知道了链表、树、哈希表等数据结构与静态数组的固定容量不同,它们…

马斯克脑机接口公司被查,曾宣布6个月内进行人体试验

来源:医谷文:医谷近日,据路透社报道称,因涉嫌违反动物保护相关内容,马斯克的脑机接口公司Neuralink正面临美国联邦部门的调查。据称,其现任和前员工指出,由于马斯克要求加快研发速度的高压要求&…

【萌味】小夕说,不了解动态空间增长的程序喵都是假喵(中)

亲爱的小屋客人,昨天小夕将小屋的讨论室重新装修啦!希望您会喜欢哦~除了口令[d],现在也可以通过主页下方的“喵了个咪”进入讨论室啦。ps:昨天小夕装修讨论室的时候发生了N次差点吐血的事件,明天小夕与大家含泪分享T_T…