人民日报:在集成电路基础研究中奋力攀登

34b4f4f4a001c7f1f7ab16b747d0e9bb.png

来源:芯榜Pro

转载自人民日报

党的十八大以来,一大批70后、80后、90后青年科研人员脱颖而出,日益成为科技创新的生力军、主力军。

党的二十大报告提出:“必须坚持科技是第一生产力、人才是第一资源、创新是第一动力,深入实施科教兴国战略、人才强国战略、创新驱动发展战略,开辟发展新领域新赛道,不断塑造发展新动能新优势。”

青年强,则国家强。党的十八大以来,一大批70后、80后、90后青年科研人员脱颖而出,日益成为科技创新的生力军、主力军。他们怀抱梦想又脚踏实地,敢想敢为又善作善成,展示了自信自强、勇攀高峰、蓬勃向上的中国力量。

—— 编  者

黄芊芊,1989年9月生于江西上饶,现为北京大学集成电路学院研究员、博士生导师,长期致力于后摩尔时代超低功耗微纳电子器件及其应用研究。

16岁考入北大,22岁在国际半导体技术领域顶级会议“国际电子器件大会”上发表论文,28岁成为北京大学研究员、博导,29岁获得国家优秀青年科学基金项目资助,30岁荣获美国电气与电子工程师协会电子器件学会青年成就奖、中国求是杰出青年学者奖,31岁荣获第二届腾讯科学探索奖,而且是50名获奖者中年龄最小的一位……

30出头的黄芊芊,是如何一路过关斩将、脱颖而出的?

黄芊芊读大三时加入黄如院士课题组,大四毕业后师从王阳元院士和黄如院士攻读博士学位。她清楚地记得:读博伊始,王老师就把自己的新著《绿色微纳电子学》赠送给她,并语重心长地指出:未来集成电路产业和科学技术发展的驱动力是降低功耗,不仅以提高集成度(减小特征尺寸)为节点,也以提高能效比为标尺。

一般来说,为了追求芯片速度和性能的不断提升,晶体管的尺寸越来越小、集成度越来越高。但这也会导致芯片的功耗密度急剧增加,若不加以优化限制,甚至会接近核反应堆或火箭喷口的水平。随着万物互联智能时代的到来,物联网、工业互联网、边缘智能计算等呈指数级增长的终端对芯片功耗提出了更为严苛的要求。晶体管和电路芯片的功耗问题,已成为制约集成电路未来发展的一大瓶颈。

从那时起,黄芊芊便暗下决心:设计实现新型超低功耗晶体管,从基础器件层面着手破解这个难题。

选准技术路线,破解难题

在全面梳理国内外已有研究成果后,黄芊芊选择了一个突破口——隧穿场效应晶体管。

当时国际上主要有两大研究思路,一个是基于传统的硅材料,一个是直接换材料。相比之下,换材料更容易把器件的开态电流提上去,而且能更快地取得研究进展、发表论文。但是,这些新材料隧穿场效应晶体管与现有标准硅基工艺不兼容,难以实现大规模生产。

是在硅基这条“老路”上硬扛,还是跟随热点、在换材料上做文章?

在与两位老师商量之后,黄芊芊选择了前者。她心里很清楚,这其实是一条最难走的技术路线:基于硅材料的传统晶体管已经发展了几十年,结构设计和生产工艺已经非常成熟。这意味着在硅基工艺上隧穿器件可以突破的空间很小,面临的挑战无疑也更大。

为什么要选一条最难的路?黄芊芊的解释是“研以致用”:“尽管在新材料上做文章很有吸引力,也是重要的前沿热点,但这些新材料距离实际应用目前还比较远。在原有的硅基体系里去创新,能够更好地让成果落地。”

传统晶体管的功耗降低受制于一个物理极限——玻尔兹曼亚阈值摆幅极限。传统的MOSFET(金属—氧化物—半导体场效应晶体管)器件的亚阈值摆幅,在室温理想情况下的极限为60mV/dec。这意味着,获取3个数量级的输出电流开关比需要至少180mV的电源电压。该限制使得以MOSFET器件为基础的集成电路芯片不能无限制地通过减小工作电压来降低功耗。另一方面,为保证晶体管足够的电流驱动能力,需要在降低电源电压的同时降低MOSFET器件的阈值电压,但这又会引起器件关态电流的升高,导致静态功耗增加。

要解决这个矛盾,就必须要研发具有超陡亚阈值摆幅的新型超低功耗器件。基于量子带带隧穿机理的硅基隧穿场效应晶体管,当时国际同行已研究了五六年,其好处在于:理论上可以突破传统MOSFET的亚阈值摆幅极限,而且关态电流还特别低,对于静态功耗占主导的低频应用来说,有望大幅降低芯片功耗。

不过,有一利必有一弊:由于硅基隧穿场效应晶体管采用的是量子带带隧穿机理,所以其隧穿电流就会受限于隧穿几率,没有传统MOSFET的驱动电流高。而开态电流在很大程度上决定了晶体管运行的速度快慢——开态电流太低,性能就难以满足需求。

如何在保证极低关态电流优势的同时,解决开态低的问题?在两位老师的指导下,黄芊芊和同伴们提出了一种开创性的新理论——“混合控制”:采用传统肖特基注入机理解决开态低的问题,同时利用隧穿机理实现低关态和超陡亚阈值摆幅。

为验证这个新理论,黄芊芊花了整整一年时间,从头到尾做了一次完整的实验。那一年,她基本上是“白加黑”、连轴转:白天跑工艺间做实验,晚上总结经验教训。到紧要阶段更是常常连熬几个通宵。一年下来,人整个瘦了一圈。

有心人,天不负。最终的实验结果证明:“混合控制”的理论在实验上行得通!

另一个更实际的问题摆在面前:如何在工艺上做出非常陡的隧穿结?要知道,常规工艺较难做出理想陡峭的隧穿结,如果工艺上做不出来,就只能是纸上谈兵。这也是当时国内外同行报道的亚阈值摆幅比理论预期要差很多的关键所在。

针对现有工艺条件对亚阈值摆幅的限制,黄芊芊和同伴们提出了一个新机理——“结耗尽调制效应”:将常规栅结构改为横向条形栅结构,引入自耗尽作用,等效实现陡峭的带带隧穿结,进而显著减小器件的亚阈值摆幅。

此后,黄芊芊继续攻关,将“混合控制”与“结耗尽调制效应”的优势结合起来,进行结构与技术创新,提出并研制出新型梳状栅杂质分凝隧穿场效应晶体管,在室温下打破了国际上硅基隧穿器件的亚阈值摆幅纪录,器件综合性能为国际报道中同类器件最高。

抓住关键所在,走产业化之路

在学校的超净实验室做出隧穿场效应晶体管,只是万里长征的第一步。这个东西最终能不能成,还得在大生产线上做出来才行。

从2012年开始,黄芊芊与国内某顶尖集成电路制造商(以下简称CMC)合作,把在学校里研发的超低功耗隧穿场效应晶体管,拿到北京亦庄的生产线上去做。

隧穿场效应晶体管这个技术从结构上看似不复杂,但在国际工业界,仍未能采用标准工艺生产线制造出性能优异的隧穿器件。“上产线到底行不行?”从北大到亦庄有一个多小时的车程,坐在车里,黄芊芊一边忍受着头晕带来的不适,一边心里犯嘀咕。

在与CMC的技术团队反复交流讨论之后,她对原有的标准生产线工艺做了一些初步的设计调整,进行了几批流片,但是结果都不太理想。

回到学校,她屏息静气,先把可能的问题从头到尾梳理了几遍,然后重新评估:设计上哪些细节还需要调整,工艺上哪个环节还应该优化……找到症结所在后,她又对方案逐一修改、优化、改进。

在2015年博士毕业那年,黄芊芊和同伴们终于在CMC的产线上研制出世界上首个基于12英寸现行标准CMOS工艺平台的互补隧穿集成技术:在同一硅晶圆片上同时实现了性能优异的互补隧穿器件和标准CMOS器件的制备,隧穿器件的亚阈值摆幅在国际上基于制造厂商工艺的同类报道中首次实现低于60mV/dec,静态功耗比同尺寸MOSFET器件低3个数量级。

但是,从这一步到最终的目标仍有一定距离,还要面临优化工艺、解决良率等一系列问题。2015年—2017年做博士后期间,黄芊芊再接再厉,一门心思破解器件在产线上的涨落和可靠性等关键问题。

2017年9月,她博士后顺利出站,被北大聘为微纳电子学系研究员、博士生导师。她与北方集成电路技术创新中心等单位的科研团队联合申请了一项国家重点研发项目,朝着实现高可靠超低功耗晶体管技术产业化的目标继续行进。

“目前进展还不错,隧穿器件的电流开关比做到了业界国际领先,我觉得有望在未来几年内实现产业化应用。”黄芊芊说。

从2009年下半年算起,黄芊芊已经在超低功耗微纳电子器件这个研究领域跋涉了13年。

记者忍不住问她:“你为什么能一条道走到黑、坚持这么长时间?”

“就是觉得这个事情有意义。”黄芊芊说,从学界到产业界,现在还能坚持在硅基隧穿晶体管上做研究的,已经很少了。“因为我们一开始就是朝着产业化的方向做,所以能一直坚持下来,不然可能干个几年就要换方向了。”

“你在接手这个课题的时候,有没有想过其中的困难?”

“说实话,我没想过困难不困难的。”黄芊芊坦陈,“我就是大概知道我要干吗,其他的事情没怎么去想。但是当你真的要走到那儿的时候就会知道:这是多么不容易的事儿。”

“我知道它很难,但我也不会对未来想特别多,让自己焦虑或者怎样。”她的办法是,把目标拆解,一步一步往前推,争取每次比原来的自己更进步一点。

“就像爬珠穆朗玛峰,如果一开始就知道自己肯定上不去,你可能就不会上了。”黄芊芊说,“但我可以先到大本营,然后再慢慢往上走。走到半山腰、感觉自己爬不动的时候,我就会告诉自己:你都走到这份上了,干吗不再努力一把?”

黄芊芊跟记者分享了北大知名美学教授朱光潜先生的一句话:一个人的生活力之强弱,以能否朝抵抗力最大的路径为准,一个国家或是一个民族也是如此。

她特别喜欢这句话:“它简单质朴,没有什么华丽的辞藻,却把做事做人的道理讲透了。”

a9012e0d7e5572150c1b8c779e7398b8.jpeg

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

27531c0aa0aa6622e53df6ac04de1cbc.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481337.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

骆清铭院士:给“大脑”绘制一个清晰可见的“地图”

来源:学习时报作者简介:骆清铭,中国科学院院士,海南大学校长,华中科技大学苏州脑空间信息研究院首席科学家。骆清铭团队研发的显微光学切片断层成像系统(MOST)系列技术,为实现单神经…

AI大神LeCun深度学习公开课来啦!4万字干货笔记(附干货笔记下载)

来源:Datawhatle喜欢深度学习?最好的方法就是在线课程。这里推荐图灵奖得主、纽约大学教授Yann LeCun主讲的在线课程。该课程最重要的优点是,它集成了LeCun对深度学习的思考。通过这门课,学习者可以了解深度学习的现状&#xff0c…

这种由数学描述的现象,在自然中终于找到了

#创作团队:原文作者:Raphael Sarfati(科罗拉多州大学波尔多分校博士后副研究员)编译:Gaviota排版:雯雯#参考来源:https://theconversation.com/synchrony-with-chaos-blinking-lights-of-a-fire…

互联网的未来:为什么我们需要 HTTP/3?

来源:SDNLAB*本文系SDNLAB编译自Ably博客自1997年HTTP/1.1标准化以来,一直是首选的应用层协议。多年来,为了跟上互联网的发展和网络上交换内容的多样性,HTTP 不得不进行升级。本文展示了 HTTP 协议的演变,深入探讨了 H…

评估深度学习模型以预测表观基因组概况

编辑 | 萝卜皮深度学习已经能够成功预测 DNA 序列的表观基因组图谱。大多数方法将此任务定义为二元分类,依赖峰值调用者来定义功能活动。最近,出现了定量模型来直接预测实验覆盖值作为回归。随着具有不同架构和训练配置的新模型不断出现,由于…

DeepMind携AlphaCode登Science封面,写代码能力不输程序员

来源:机器之心编辑:小舟、陈萍AI 卷到程序员自己身上了。今年年初,DeepMind 发布了基于 Transformer 的新模型 AlphaCode,该模型实现了大规模代码生成。现在,AlphaCode 又在《Science》上发表了新论文,研究…

微软 CTO 断言,明年是AI社区最激动人心的一年,网友:GPT-4 要来了?

来源:AI前线 整理:褚杏娟 核子可乐GPT 不出,AI 万古如长夜。“对于人工智能,2022 年是有史以来最激动人心的一年。”微软首席技术官 Scott Stein 在近日的分享中说道,但他还自信地表示,“2023 年将是 AI 社…

以“开放同行评议”推动学术发展

来源:《中国社会科学报》图片来源:CFP同行评议是指同一领域的专家学者评议研究人员稿件,确定学术论文是否适合发表、提出意见的过程。同行评议一直是学术期刊出版的重要基石。然而,学术界关于同行评议中的偏见和不利影响的争论&am…

2022年,人工智能领域发展的七大趋势有哪些?

来源:福布斯官网美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在…

DeepMind VS Meta:实现纳什均衡理性最优解,还是多人非零和博弈算法更强大?

大数据文摘转载自AI科技大本营编译 & 整理:杨阳记得豆瓣高分电影《美丽心灵》中的约翰纳什吗?作为获得诺贝尔经济学奖的数学家,纳什在博弈论、微分几何学,以及偏微分方程等各个领域都作出卓越贡献。为表彰他在非合作博弈理论中…

【萌味】小夕说,不了解动态空间增长的程序喵都是假喵(上)

小提示:小夕会将小屋的最新动态更新到小屋的布告栏哦,口令是【nb】(口令在订阅号主界面直接回复即可使用)。 小夕学了数据结构后,知道了链表、树、哈希表等数据结构与静态数组的固定容量不同,它们…

马斯克脑机接口公司被查,曾宣布6个月内进行人体试验

来源:医谷文:医谷近日,据路透社报道称,因涉嫌违反动物保护相关内容,马斯克的脑机接口公司Neuralink正面临美国联邦部门的调查。据称,其现任和前员工指出,由于马斯克要求加快研发速度的高压要求&…

【萌味】小夕说,不了解动态空间增长的程序喵都是假喵(中)

亲爱的小屋客人,昨天小夕将小屋的讨论室重新装修啦!希望您会喜欢哦~除了口令[d],现在也可以通过主页下方的“喵了个咪”进入讨论室啦。ps:昨天小夕装修讨论室的时候发生了N次差点吐血的事件,明天小夕与大家含泪分享T_T…

马斯克点赞!DeepMind神AI编剧,一句话生成几万字剧本

来源:机器学习研究组订阅你有灵光乍现的时刻吗?就是那种:这点子太好了,要是拍成电影一定能大火?之前这种想法可能只能停留在你的脑海中,而现在,一个「AI编剧大师」的出现,或许能让你…

“东数西算”之五大热点问题探讨

"“东数西算”无疑是2022年一大热词,产业界和学术界就该话题进行了深入的研究探讨。"整体上来看,“东数西算”的实施,一方面是为了更好地利用西部相对优惠的电力资源和优异的气候条件,推动数据中心的优化布局和产业整体…

科普一下人工智能领域的研究方向

路人甲:“你是学什么的?” 小夕:“学计算机嗒~” 路人甲:“哦哦,那你ps肯定很厉害!” 小夕:“我不会,我是做人工智能的。” 路人甲:“哦哦,做机器人的啊&…

编程神器Copilot被官司搞怕了?月收费19美元的商业版将提供辩护服务,最高索赔50万美元...

来源:AI前线作者:凌敏、核子可乐Copilot 的商业化“虽迟但到”。GitHub 推出商业版 Copilot据外媒 theRegister 报道,GitHub 旗下的 AI 编程神器 Copilot 现已推出商业版本,每月收费 19 美元(约合 133 元人民币&#x…

【激萌】人工智能大地图-生存能力篇

小屋的喵喵们,讨论室的投票明天就要截止了,还没有投票的喵喵快来啦。通过口令[d]或者主界面下方“喵了个咪”菜单即可进入讨论室哦。本文的封面图还是小夕设计的哦~喜欢吗(⁎⁍̴̛ᴗ⁍̴̛⁎)路人甲:“你是学什么的?”小夕&#…

Nature经典回顾:大脑中统一的物体空间模型

导语大脑能够轻而易举的完成物体识别,这一过程主要在大脑的下颞叶皮层进行。研究已经发现下颞叶皮层存在面孔、身体、场景等类别选择性区域,然而,仍有大部分下颞叶皮层未发现已知的功能特异性。这就带来一系列问题:未被理解的大片…

小夕说,不了解动态空间增长的程序喵都是假喵(下)

小夕在本系列前两篇文章中为大家介绍了各类数据结构的扩容策略,且在上篇文末,小夕提到了加倍式扩容中,倍率采用2并不是最优的,为什么呢?有没有最优倍率呢?内存复用如果倍率采用2甚至更大的数,那…