肖仰华 | 基于知识图谱的可解释人工智能:机遇与挑战

本文转载自公众号知识工场,整理自 2017 年 10 月 13 日肖仰华教授在 CIIS2017 中国智能产业高峰论坛上所做的报告。




肖仰华:很高兴有机会跟大家一起分享《基于知识图谱的可解释人工智能:机遇与挑战》。

刚才刘总的报告中提到了机器和人类将来要互相拥抱,互相拥抱的前提是互信,机器要相信我们,我们要相信机器。这个相信指的是,比如机器给我们做一个决策案或者治疗方案,我们能够相信机器给出的结果。当前,机器显然还不能给出合理的解释, AI系统作出的决策仍然缺乏可解释性。正因为可解释性的缺乏,导致人类对机器产生的结果无法采信。可以设想一下,如果我们都不相信机器的行为和决策,那么机器为人类生活提供的服务将大打折扣。所以需要增强人工智能的可信性和可解释性。


AI的可解释性问题要从深度学习谈起。这几年我们见证了深度学习的一系列突破。深度学习的进展本质上是由大数据喂养出来的。大数据时代,海量高质量的带标注数据,使深度学习模型可以学习到非常有效的层次化特征表示,从而使得深度学习成为可能。以云计算为代表的大规模分布式计算平台以及GPUFPGA等硬件能力的提升为深度学习提供了必要的计算基础设施。大数据喂养下的深度学习取得了显著进展,机器在图像、语音识别等感知能力方面甚至超越人类。在深度学习的推动下,自然语言处理方面也取得了显著进展。


然而,深度学习的一个广为诟病的问题是其不透明性,不可解释性。深度学习模型是一种端到端的学习,接受大样本作为训练输入,所习得的模型本质上是神经网络结构的参数。其预测过程,是相应参数下的计算过程,比如说输入一张狗的图片,机器做出是否是狗的判断。深度学习的学习和预测过程是不透明的,模型究竟学到了什么有效特征,使得它做出这样一个判断,这个过程缺乏可解释性。深度学习的不透明性问题,有时又被称为深度学习的黑盒(“Black box”)问题,最近受到了广泛关注。《Nature》、《Science》以及《MIT Technology Review》最近都有文章讨论这一问题,都指出深度学习的发展需要打开这个黑盒。乔治亚理工的Mark Riedl认为如果AI系统不能回答Why问题,解释这些系统何以产生特定的结果,这些AI系统就只能束之高阁。


深度学习的黑盒问题吸引了各界人士广泛的研究兴趣,学术界与工业界都在努力打开深度学习或者AI系统的黑盒子。这些工作都可以被视作是可解释人工智能的研究范畴,也就是Explainable AI或者简称为XAIXAI吸引了很多学术团体和政府的关注,最有代表性的就是David Gunning所领导的美国军方DAPRA可解释AI项目,他们旨在建设一套全新的且具有更好可解释性、以及更易为人所理解的机器学习模型。比如在猫的识别任务中,新模型不仅仅告诉你这是一只猫,而且还告诉你模型是因为观察到了猫所特有的爪子和耳朵等做出这是猫的判断。


XAI在我看来,不单单是对于解决深度学习可解释性问题具有重要意义,它将在整个AI里都扮演着非常重要的角色。因为,我个人认为理解和解释将来会是整个后深度学习时代人工智能最为核心的使命。在深度学习时代,我们的模型某种程度上只知其然而不知其所以然。这就好比中医看病,根据以往的经验做诊断。当然,无论是现代中医还是传统中医也都在寻求理论解释,但是仍然很难全面达到西医的解释水平。很显然,我们不可能对只知其然而不知其所以然的AI系统完全采信。所以AI势必要从只“知其然”走向“知其所以然”。我们希望XAI能够解释过程,也能够解释结果。只有能够解释过程和结果,才能使人类信任它。还有很多机器学习模型,我们知道任何模型都不可能100%准确,一定会产生错误,对于产生这些特定错误的原因,我们也在寻求解释。更重要的是,未来我们的AI医生所做的任何治疗方案,都必须配备解释,否则人类不可能为它的诊断买单。在电商以及更多商业场景下,可解释的推荐显得尤为重要,我们相信,将来如果电商不只是给用户推荐一个商品,而且还能告诉用户为什么推荐这个商品,这样的推荐更有说服力。比如说用户去订酒店的时候,可以告诉用户推荐这个酒店的理由,或是离用户会场较近,或是价格便宜。再比如说用户搜索“二段奶粉”,平台可以告诉用户喝此段奶粉的婴儿每天需要饮用多少水,用多大容量的水杯保证每天用水量,从而推荐水杯给用户,如果平台做到有解释的推荐,相信销量肯定会大有提升。


可解释人工智能非常重要,很多人都在尝试解决这一问题,不同的学术团体根据各自的特长在做相应的努力。比如最近刚过学者提出Information Bottleneck的理论,这实质上是信息论的学者,尝试从信息论角度解决这个问题。我本人是从事知识库和知识图谱研究的,所以我的出发点是阐述从知识图谱的角度看XAI有什么机会。我的基本观点是,知识图谱为XAI带来重大机遇。首先要了解知识图谱是什么?刚才也有学者提过,知识图谱是一种语义网络,包含大量实体和概念及其之间的语义关系。相对于传统的知识表示,知识图谱具有海量规模、语义丰富、结构友好、质量精良等优点。知识图谱的这些优点使其成为机器理解语言的重要的背景知识,使机器语言认知成为可能。当前,自然语言“理解”仍是个很遥远的目标,现在只能谈得上是处理。为什么谈不上理解,就是因为没有背景知识。正是在知识图谱的支撑下,机器才能理解搜索关键字,从而实现从搜索直接通往答案,我们才能做到大数据的精准分析,未来我们才可能实现机器智脑。


知识图谱对于XAI的重要作用可以套用Edward Feigenbaum的一句话名言来阐述。图灵奖获得者,知识工程创始人Edward Feigenbaum有个观念:“Knowledge is the power in AI system”。我认为Knowledge is thepower in XAI system知识图谱中所富含的实体、概念、属性、关系等信息,使解释成为可能。比如C罗是一个实体,运动员是他的一个概念,他曾经获得“金球奖”这个奖项,这就是知识图谱的基本构成。为什么知识图谱对可解释AI有帮助?我们先来看一下人是怎么解释的。对于问题,鲨鱼为什么那么可怕?人类给出的解释可能是鲨鱼是食肉动物,这实质是用概念在解释。而为什么鸟儿会飞翔?人类的解释则可能是鸟儿有翅膀,这实质上使用属性在解释。还有最近的热门问题,为什么鹿晗和关晓彤刷屏了,因为关晓彤是鹿晗女朋友,大家都知道是因为他们公开了恋爱关系,引得鹿晗粉丝一片哗然。这里的解释实质上是用关系在解释。我们或许会进一步追问,为什么人类倾向于用概念、关系和属性做解释?这是因为任何解释都是在认知基本框架下进行的。人类认识世界理解事物的过程,其实就是在用概念、属性和关系去认知世界的过程。概念、属性、关系是理解和认知的基石。


基于上面的认识,我们开始利用知识图谱进行解释的一些探索性研究工作。首先简单介绍一下我们即将用到的两类知识图谱。


一是ProbaseProbase+Probase是一个大规模isA知识库,是从大规模web语料中通过pattern抽取得到的。比如针对“Domestic animals such as cats and dogs”,通过such as模式,可以抽取出Cat is a domesticanimal以及Dog is a domesticanimal这样的isA知识。Probase+是在Probase基础之上,通过补全和纠错,进而得到了一个更大规模的isA知识库。


第二我们将用到的知识库是DBpediaCN-DBpedia。它们都是关于实体的结构化知识库,比如<复旦大学,位于,上海市杨浦区>这样的三元组事实。CN-DBpediaDBpedia的中文版本,是由我所在的复旦大学知识工场实验室研发并且维护的。后续我将介绍的解释研究,主要就是基于这两类知识库。


先介绍如何利用ProbaseProbase+让机器理解和解释概念。在互联网上有很多新概念(Concept)、新品类(Category)。通常机器仍难以理解或解释这些概念或者类别。比如对于Bachelor(单身汉)这个概念,我们人是怎么解释的呢?我们可能会用一组属性来解释,比如{未婚、男性}


我们在这个任务中的基本目标就是为每个概念和类别自动产生这样的属性解释。利用DBpedia这样的知识库,为每个概念或类别自动生成一组属性加以解释。最终我们为DBpedia中的6万多个概念自动生成了它们的属性解释。


我们紧接着看看如何利用知识图谱让机器理解一组实体,并进而做出推荐。如果我跟你说百度和阿里,你自然会想到腾讯,因为它们俗称BAT,都是中国的互联网巨头,都是IT大公司。假如我们先在亚马逊上搜索iphone8,紧接着搜索三星S8,那么亚马逊应该给我推荐什么呢?最好是推荐华为P10一类的手机。因为根据用户的搜索,我们能够推断出用户大致是在搜索高端智能手机,如果平台推荐一些中低端廉价手机,用户可能就会不满意。


这种推荐是建立在实体理解基础上,我们希望用概念去解释实体,从而准确把握用户搜索意图。通过显式地给出概念,系统可以展示对于搜索实体的理解。比如说搜索阿里和腾讯,系统不仅推荐百度,还可以给出因为它们都是互联网巨头这样的解释。我们利用Probase知识库提供背景知识,提出了一个基于相对熵的模型来产生概念解释以及寻找最佳推荐实体。


接下来介绍如何利用知识库让机器解释词袋(Bag of words)。在进行文本处理,特别是主题模型时,我们经常碰到词袋。一个主题往往表达为一组词,我们经常困惑于不知道这组词说明了什么。在社交媒体上也大量存在各类词袋,比如Flickr上图片的tag,微博用户的标签等等都是词袋。我们通过一个真实的例子来说明让机器解释词袋的任务,比如一个图片的标签是“新郎”、“新娘”、“婚纱”、“庆典”这些词,很显然我们人对于这组标签的理解是婚礼,我们希望机器也能自动为这组词产生“婚礼”这样的解释。


这里忽略方法细节。我们利用Probase等知识库,提出了一个基于最小描述长度的模型,来为输入词袋产生一组易于理解的概念标签,用以解释这个词袋。


最后一个任务是解释维基百科中的链接实体。我们知道百科数据很重要,百科中每个词条的解释文本中会提及大量相关实体,这些实体通过超链接连接到相应词条。我们的基本任务是能否解释每个百科实体与其链接实体之间的关系。比如在有关SQL的词条中,往往会提到E. F. Codd。事实上E.F.Codd是关系数据库理论的奠基人,是SQL发明的关键人物。我们能否产生一个解释来说明为何E. F. Codd出现在SQL的链接实体中?


我们将这个问题建模成可解释的聚类问题,我们先将所有链接实体聚类,并自动生成一个概念标签解释每个类,从而解释为何一个链接实体出现在某个特定实体的描述页面中。


虽然我们在基于知识图谱的可解释人工智能方面开展了初步研究,但仍然面临巨大挑战。总体来说,可解释人工智能的路还非常遥远,具体要面临哪些挑战呢?我认为有这几个挑战:一是对于解释和理解的认知仍然很匮乏。我们如果想把解释和理解的能力赋予机器,我们首先要反思自身,理解人是怎么解释现象,人是如何理解世界的。但是,我们在哲学、心理学、认知科学等层面,对于人类的理解和解释的认知十分有限,尤其是对于日常生活中的理解和解释机制更为有限。当前哲学领域理解和解释的研究主要还是聚焦在科学研究过程中的理解和解释,而人类日常生活的理解和解释对于人工智能技术而言则具有更重要的参考意义,对于服务机器人融入人类的生活具有重要意义。但遗憾的是,我们对日常生活中的理解与解释仍知之甚少。

    第二个挑战就是,大规模常识的获取及其在XAI中的应用。常识就是大家都知道的知识,比如说人会走、鱼会游等等。我们的解释通常会用到一些常识,当问题涉及到常识的时候,这个问题的解释就会变得非常困难。因为目前对机器而言,常识仍然十分缺乏。常识缺乏的根本原因在于我们很少会提及常识。正因为大家都知道常识,故而没必要提及,以至于语料中也不会显式提及常识。这样一来,所有基于文本抽取的方法就会失效。常识获取仍是当前知识库构建的瓶颈问题。但是常识获取也不是真的一点办法也没有,在大数据的某些角落里,还是会提及常识的。总体而言,常识的获取以及在XAI里怎么用是有很大难度的。

    XAI的第三个挑战是数据驱动与知识引导深度融合的新型机器学习模型,或者说是如何将符号化知识有机融入基于数据的统计学习模型中。这不仅是XAI的核心问题,也是当前整个人工智能研究的重大问题之一。要想对于机器学习,特别是深度学习的过程,进行显式解释,我们需要将符号化知识植入到数值化表示的神经网络中去,用符号化知识解释习得深度神经网络的中间表示与最终结果。符号化知识与深度学习模型的有机融合是降低深度学习模型的样本依赖,突破深度学习模型效果的天花板的关键所在。目前这一问题虽然受到了普遍关注,但仍然缺乏有效手段。



总结一下,在这次报告中我想表达的观点包括:一、以深度学习为代表的大数据人工智能获得巨大进展。二、深度学习的不透明性、不可解释性已经成为制约其发展的巨大障碍。三、理解与解释是后深度学习时代AI的核心任务。四、知识图谱为可解释人工智能提供全新机遇。五、“解释”难以定义,常识获取与应用,深度学习和符号主义的融合对XAI提出巨大挑战。

最后把亚里士多德的一句名言“Knowing yourself is the beginning of all wisdom”送给大家。研究可解释人工智能的前提是梳理清晰人类自身的认知机制。认清我们自己,才能将人类的能力赋予机器。我相信重新审视人类自我将是在未来人工智能研究过程中经常遇到的情形。

谢谢大家!


关注“知识工场”微信公众号,回复“20171013”获取下载链接。




以上就是肖仰华教授在CIIS2017 中国智能产业高峰论坛上为大家带来的全部内容。知识工场实验室后续将为大家带来更精彩的文章,请大家关注。





OpenKG.CN


中文开放知识图谱(简称OpenKG.CN)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

点击阅读原文,进入 OpenKG 博客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481017.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

对话系统的设计艺术(完结)

Motivation对话是一个很大的概念&#xff0c;有非常非常多的子问题&#xff0c;刚入坑的小伙伴很可能迷失在对话的一小块区域里无法自拔&#xff0c;本文就是为解决这一类问题的。希望读者在看完本文后&#xff0c;可以理清楚对话的每个概念为什么而存在&#xff0c;以及它在整…

2018届校招面经精选

https://www.zhihu.com/question/23259302 牛客网​已认证的官方帐号819 人赞同了该回答最好的办法就是看看别人是怎么准备的&#xff0c;通过别人的面经来反思自己如何准备。针对应届生校招面试 “机器学习” 相关岗位的情况&#xff0c;牛妹为大家整理了一批面经&#xff0c…

白硕 | 知识图谱,就是场景的骨架和灵魂

本文转载自公众号恒生技术之眼 知识图谱&#xff0c;目前已在全世界得到了重视和应用&#xff0c;成为当下人工智能热的一个重要组成部分。它究竟是怎样的一种技术&#xff1f;它的应用场景在哪里&#xff1f;未来国内企业该如何发展&#xff1f;让我们一起来聊聊。 从知识图谱…

您的DST大礼包请查收

本文转载自刘冲大佬&#xff08;知乎id&#xff1a;呜呜哈&#xff09;的知乎文章&#xff0c;链接&#xff1a;https://zhuanlan.zhihu.com/p/40988001除本文外&#xff0c;作者还写了很多对话相关的良心好文&#xff01;做对话的小伙伴千万不要错过这位良心答主噢(&#xffe…

LSTM长短记,长序依赖可追忆(深度学习入门系列之十四)

摘要&#xff1a;如果你是一名单身狗&#xff0c;不要伤心&#xff0c;或许是因为你的记忆太好了。有时&#xff0c;遗忘是件好事&#xff0c;它让你对琐碎之事不再斤斤计较。然而每当自己记不住单词而“问候亲人”时&#xff0c;也确实气死个人。于是你懂得了如何控制好什么信…

技术动态 | 清华大学开源OpenKE:知识表示学习平台

本文转载自公众号机器之心&#xff0c;选自 THUNLP。 清华大学自然语言处理实验室近日发布了 OpenKE 平台&#xff0c;整合了 TransE、TransH、TransR、TransD、RESCAL、DistMult、HolE、ComplEx 等算法的统一接口高效实…

多任务学习时转角遇到Bandit老虎机

注&#xff1a;本文的正文干货转载并少量修改自大佬覃含章&#xff08;知乎id同名&#xff0c;知乎必关的数值优化大佬啊啊&#xff09;的一篇知乎回答&#xff0c;链接https://www.zhihu.com/question/53381093/answer/562235053一个转角事情是这样的&#xff0c;最近小夕在做…

NLP13-LDA引发的一系活动

摘要&#xff1a; 目标是想了解也学习LDA&#xff0c;寻找学习LDA相关资料&#xff0c;学习LDA相关的概率基础&#xff0c;对于LSI&#xff0c;pLsa,LDA作为主题模型的对比&#xff1b;然后到LDA本身&#xff0c;对LDA相关的概率基础进行学习。把相关资料疏理与集合起来。

王昊奋 | 从聊天机器人到虚拟生命:AI技术的新机遇

本文转载自公众号中国人工智能学会。 10月12-13日&#xff0c;第七届中国智能产业高峰论坛在佛山开幕&#xff0c;在NLP与服务机器人专题论坛上&#xff0c;深圳狗尾草CTO王昊奋发表了主题为《从聊天机器人到虚拟生命&#xff1a;AI技术的新机遇》的精彩演讲。 以下是王昊奋老师…

【Java】如何理解Java中的异常机制?

1 异常的概念 程序在执行过程中出现非正常线性&#xff0c;导致JVM非正常停止异常不是语法错误 2 异常的分类 Throwable是所有错误或异常的超类Exception是编译期间异常&#xff08;写代码时IDE会报错&#xff09;RuntimeException时运行期异常&#xff0c;程序运行时出现的…

文本匹配相关方向总结(数据,场景,论文,开源工具)

Motivation 前不久小夕在知乎上写了一个回答《NLP有哪些独立研究方向》&#xff0c;于是有不少小伙伴来问分类和匹配的参考资料了&#xff0c;鉴于文本分类的资料已经超级多了&#xff0c;就不写啦&#xff08;不过分类相关的tricks可以看之前写的这篇文章《文本分类重要tricks…

机器学习】LDA线性判别分析

【机器学习】LDA线性判别分析1. LDA的基本思想2. LDA求解方法3. 将LDA推广到多分类4. LDA算法流程5. LDA和PCA对比【附录1】瑞利商与广义瑞利商线性判别分析 (Linear Discriminant Analysis&#xff0c;LDA)是一种经典的线性学习方法&#xff0c;在二分类问题上因为最早由[Fish…

科普 | 动态本体简介

本文转载自知乎专栏知识图谱和智能问答。 1 近年来&#xff0c;随着语义Web的兴起&#xff0c;本体技术受到了广泛关注。很多大型跨国公司都开始研究本体技术。谷歌于2012年提出了知识图谱的项目&#xff0c;旨在利用本体技术来提高搜索的精度和更智能化的知识浏览。国内的互联…

文本匹配相关方向打卡点总结

Motivation前不久小夕在知乎上写了一个回答《NLP有哪些独立研究方向》[1]&#xff0c;于是有不少小伙伴来问分类和匹配的参考资料了&#xff0c;鉴于文本分类的资料已经超级多了&#xff0c;就不写啦&#xff08;不过分类相关的tricks可以看之前写的这篇文章《文本分类重要tric…

深入理解K-Means聚类算法

版权声明&#xff1a;本文为博主原创文章&#xff0c;未经博主允许不得转载。 https://blog.csdn.net/taoyanqi8932/article/details/53727841 </div><link rel"stylesheet" href"https://csdnimg.cn/release/phoenix/template/css/ck_htmledit…

刘挺 | 从知识图谱到事理图谱

本文转载自 AI科技评论。 在“知识图谱预见社交媒体”的技术分论坛上&#xff0c;哈尔滨工业大学刘挺教授做了题为“从知识图谱到事理图谱”的精彩报告。会后AI科技评论征得刘挺教授的同意&#xff0c;回顾和整理了本次报告的精彩内容。 刘挺教授 刘挺教授的报告内容分为四部分…

我对JVM的理解

一、JVM简介 JVM总体上是由类装载子系统&#xff08;ClassLoader&#xff09;、运行时数据区、执行引擎、内存回收这四个部分组成。 其中我们最为关注的运行时数据区&#xff0c;也就是JVM的内存部分则是由方法区&#xff08;Method Area&#xff09;、JAVA堆&#xff0…

【LeetCode】4月4日打卡-Day20-接雨水

描述 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图&#xff0c;在这种情况下&#xff0c;可以接 6 个单位的雨水&#xff08;蓝色部分表示雨水&a…

算法与数据结构--空间复杂度O(1)遍历树

大家好~我叫「小鹿鹿鹿」&#xff0c;是本卖萌小屋的第二位签约作&#xff08;萌&#xff09;者&#xff08;货&#xff09;。和小夕一样现在在从事NLP相关工作&#xff0c;希望和大家分享NLP相关的、不限于NLP的各种小想法&#xff0c;新技术。这是我的第一篇试水文章&#xf…

PCA主成分分析学习总结

大概主成分分析&#xff08;Principal components analysis&#xff0c;以下简称PCA&#xff09;是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA&#xff0c;下面我们就对PCA的原理做一个总结。首先…