深入理解K-Means聚类算法

				版权声明:本文为博主原创文章,未经博主允许不得转载。					https://blog.csdn.net/taoyanqi8932/article/details/53727841				</div><link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-f57960eb32.css"><div id="content_views" class="markdown_views"><!-- flowchart 箭头图标 勿删 --><svg xmlns="http://www.w3.org/2000/svg" style="display: none;"><path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path></svg><h2 id="概述"><a name="t0"></a><strong>概述</strong></h2>

什么是聚类分析

聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。

不同的簇类型

聚类旨在发现有用的对象簇,在现实中我们用到很多的簇的类型,使用不同的簇类型划分数据的结果是不同的,如下的几种簇类型。

这里写图片描述

明显分离的

可以看到(a)中不同组中任意两点之间的距离都大于组内任意两点之间的距离,明显分离的簇不一定是球形的,可以具有任意的形状。

基于原型的

簇是对象的集合,其中每个对象到定义该簇的原型的距离比其他簇的原型距离更近,如(b)所示的原型即为中心点,在一个簇中的数据到其中心点比到另一个簇的中心点更近。这是一种常见的基于中心的簇,最常用的K-Means就是这样的一种簇类型。
这样的簇趋向于球形。

基于密度的

簇是对象的密度区域,(d)所示的是基于密度的簇,当簇不规则或相互盘绕,并且有早上和离群点事,常常使用基于密度的簇定义。

关于更多的簇介绍参考《数据挖掘导论》。

基本的聚类分析算法

1. K均值:
基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇。

2. 凝聚的层次距离:
思想是开始时,每个点都作为一个单点簇,然后,重复的合并两个最靠近的簇,直到尝试单个、包含所有点的簇。

3. DBSCAN:
一种基于密度的划分距离的算法,簇的个数有算法自动的确定,低密度中的点被视为噪声而忽略,因此其不产生完全聚类。

距离量度

不同的距离量度会对距离的结果产生影响,常见的距离量度如下所示:

这里写图片描述

这里写图片描述

K-Means算法

下面介绍K均值算法:

优点:易于实现
缺点:可能收敛于局部最小值,在大规模数据收敛慢

算法思想较为简单如下所示:

选择K个点作为初始质心  
repeat  将每个点指派到最近的质心,形成K个簇  重新计算每个簇的质心  
until 簇不发生变化或达到最大迭代次数  
  • 1
  • 2
  • 3
  • 4
  • 5

这里的重新计算每个簇的质心,如何计算的是根据目标函数得来的,因此在开始时我们要考虑距离度量和目标函数。

考虑欧几里得距离的数据,使用误差平方和(Sum of the Squared Error,SSE)作为聚类的目标函数,两次运行K均值产生的两个不同的簇集,我们更喜欢SSE最小的那个。

这里写图片描述

k表示k个聚类中心,ci表示第几个中心,dist表示的是欧几里得距离。
这里有一个问题就是为什么,我们更新质心是让所有的点的平均值,这里就是SSE所决定的。

这里写图片描述

下面用Python进行实现

# dataSet样本点,k 簇的个数
# disMeas距离量度,默认为欧几里得距离
# createCent,初始点的选取
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):m = shape(dataSet)[0] #样本数clusterAssment = mat(zeros((m,2))) #m*2的矩阵                   centroids = createCent(dataSet, k) #初始化k个中心clusterChanged = True             while clusterChanged:      #当聚类不再变化clusterChanged = Falsefor i in range(m):minDist = inf; minIndex = -1for j in range(k): #找到最近的质心distJI = distMeas(centroids[j,:],dataSet[i,:])if distJI < minDist:minDist = distJI; minIndex = jif clusterAssment[i,0] != minIndex: clusterChanged = True# 第1列为所属质心,第2列为距离clusterAssment[i,:] = minIndex,minDist**2print centroids# 更改质心位置for cent in range(k):ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]centroids[cent,:] = mean(ptsInClust, axis=0) return centroids, clusterAssment
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

重点理解一下:

  for cent in range(k):ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]centroids[cent,:] = mean(ptsInClust, axis=0) 
  • 1
  • 2
  • 3

循环每一个质心,找到属于当前质心的所有点,然后根据这些点去更新当前的质心。
nonzero()返回的是一个二维的数组,其表示非0的元素位置。

>>> from numpy import *
>>> a=array([[1,0,0],[0,1,2],[2,0,0]])
>>> a
array([[1, 0, 0],[0, 1, 2],[2, 0, 0]])
>>> nonzero(a)
(array([0, 1, 1, 2]), array([0, 1, 2, 0]))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

表示第[0,0],[1,1] … 位非零元素。第一个数组为行,第二个数组为列,两者进行组合得到的。

ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]
因此首先先比较clusterAssment[:,0].A==cent的真假,如果为真则记录了他所在的行,因此在用切片进行取值。

一些辅助的函数:

def loadDataSet(fileName):      #general function to parse tab -delimited floatsdataMat = []                #assume last column is target valuefr = open(fileName)for line in fr.readlines():curLine = line.strip().split('\t')fltLine = map(float,curLine) #map all elements to float()dataMat.append(fltLine)return dataMatdef distEclud(vecA, vecB):return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)def randCent(dataSet, k):n = shape(dataSet)[1]centroids = mat(zeros((k,n)))#create centroid matfor j in range(n):#create random cluster centers, within bounds of each dimensionminJ = min(dataSet[:,j]) rangeJ = float(max(dataSet[:,j]) - minJ)centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))return centroids
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

运行和结果

将上述代码写到kMeans.py中,然后打开python交互端。

>>> from numpy import *
>>> import kMeans
>>> dat=mat(kMeans.loadDataSet('testSet.txt')) #读入数据
>>> center,clust=kMeans.kMeans(dat,4)
[[ 0.90796996  5.05836784][-2.88425582  0.01687006][-3.3447423  -1.01730512][-0.32810867  0.48063528]]
[[ 1.90508653  3.530091  ][-3.00984169  2.66771831][-3.38237045 -2.9473363 ][ 2.22463036 -1.37361589]]
[[ 2.54391447  3.21299611][-2.46154315  2.78737555][-3.38237045 -2.9473363 ][ 2.8692781  -2.54779119]]
[[ 2.6265299   3.10868015][-2.46154315  2.78737555][-3.38237045 -2.9473363 ][ 2.80293085 -2.7315146 ]]
# 作图
>>>kMeans(dat,center)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

这里写图片描述

绘图的程序如下:

def draw(data,center):length=len(center)fig=plt.figure# 绘制原始数据的散点图plt.scatter(data[:,0],data[:,1],s=25,alpha=0.4)# 绘制簇的质心点for i in range(length):plt.annotate('center',xy=(center[i,0],center[i,1]),xytext=\(center[i,0]+1,center[i,1]+1),arrowprops=dict(facecolor='red'))plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

K-Means算法的缺陷

k均值算法非常简单且使用广泛,但是其有主要的两个缺陷:
1. K值需要预先给定,属于预先知识,很多情况下K值的估计是非常困难的,对于像计算全部微信用户的交往圈这样的场景就完全的没办法用K-Means进行。对于可以确定K值不会太大但不明确精确的K值的场景,可以进行迭代运算,然后找出Cost Function最小时所对应的K值,这个值往往能较好的描述有多少个簇类。
2. K-Means算法对初始选取的聚类中心点是敏感的,不同的随机种子点得到的聚类结果完全不同
3. K均值算法并不是很所有的数据类型。它不能处理非球形簇、不同尺寸和不同密度的簇,银冠指定足够大的簇的个数是他通常可以发现纯子簇。
4. 对离群点的数据进行聚类时,K均值也有问题,这种情况下,离群点检测和删除有很大的帮助。

下面对初始质心的选择进行讨论:

拙劣的初始质心

当初始质心是随机的进行初始化的时候,K均值的每次运行将会产生不同的SSE,而且随机的选择初始质心结果可能很糟糕,可能只能得到局部的最优解,而无法得到全局的最优解。如下图所示:

这里写图片描述
可以看到程序迭代了4次终止,其得到了局部的最优解,显然我们可以看到其不是全局最优的,我们仍然可以找到一个更小的SSE的聚类。

随机初始化的局限

你可能会想到:多次运行,每次使用一组不同的随机初始质心,然后选择一个具有最小的SSE的簇集。该策略非常的简单,但是效果可能不是很好,这取决于数据集合寻找的簇的个数。

关于更多,参考《数据挖掘导论》

K-Means优化算法

为了克服K-Means算法收敛于局部最小值的问题,提出了一种二分K-均值(bisecting K-means)

bisecting K-means

算法的伪代码如下:

将所有的点看成是一个簇
当簇小于数目k时对于每一个簇计算总误差在给定的簇上进行K-均值聚类,k值为2计算将该簇划分成两个簇后总误差选择是的误差最小的那个簇进行划分
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

完整的Python代码如下:

def biKmeans(dataSet, k, distMeas=distEclud):m = shape(dataSet)[0]# 这里第一列为类别,第二列为SSEclusterAssment = mat(zeros((m,2)))# 看成一个簇是的质心centroid0 = mean(dataSet, axis=0).tolist()[0]centList =[centroid0] #create a list with one centroidfor j in range(m):    #计算只有一个簇是的误差clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2# 核心代码while (len(centList) < k):lowestSSE = inf# 对于每一个质心,尝试的进行划分for i in range(len(centList)):# 得到属于该质心的数据ptsInCurrCluster =\ dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]# 对该质心划分成两类centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)# 计算该簇划分后的SSEsseSplit = sum(splitClustAss[:,1])# 没有参与划分的簇的SSEsseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])print "sseSplit, and notSplit: ",sseSplit,sseNotSplit# 寻找最小的SSE进行划分# 即对哪一个簇进行划分后SSE最小if (sseSplit + sseNotSplit) < lowestSSE:bestCentToSplit = ibestNewCents = centroidMatbestClustAss = splitClustAss.copy()lowestSSE = sseSplit + sseNotSplit# 较难理解的部分bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whateverbestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplitprint 'the bestCentToSplit is: ',bestCentToSplitprint 'the len of bestClustAss is: ', len(bestClustAss)centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids centList.append(bestNewCents[1,:].tolist()[0])clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSEreturn mat(centList), clusterAssment
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

下面对最后的代码进行解析:

      bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever
      bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
  • 1
  • 2

这里是更改其所属的类别,其中bestClustAss = splitClustAss.copy()是进行k-means后所返回的矩阵,其中第一列为类别,第二列为SSE值,因为当k=2是k-means返回的是类别0,1两类,因此这里讲类别为1的更改为其质心的长度,而类别为0的返回的是该簇原先的类别。

举个例子:
例如:目前划分成了0,1两个簇,而要求划分成3个簇,则在算法进行时,假设对1进行划分得到的SSE最小,则将1划分成了2个簇,其返回值为0,1两个簇,将返回为1的簇改成2,返回为0的簇改成1,因此现在就有0,1,2三个簇了。

  centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids centList.append(bestNewCents[1,:].tolist()[0])clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE
  • 1
  • 2
  • 3

其中bestNewCents是k-means的返回簇中心的值,其有两个值,分别是第一个簇,和第二个簇的坐标(k=2),这里将第一个坐标赋值给 centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0],将另一个坐标添加到centList中 centList.append(bestNewCents[1,:].tolist()[0])

运行与结果

>>> from numpy import *
>>> import kMeans
>>> dat = mat(kMeans.loadDataSet('testSet2.txt'))
>>> cent,assment=kMeans.biKmeans(dat,3)
sseSplit, and notSplit:  570.722757425 0.0
the bestCentToSplit is:  0
the len of bestClustAss is:  60
sseSplit, and notSplit:  68.6865481262 38.0629506357
sseSplit, and notSplit:  22.9717718963 532.659806789
the bestCentToSplit is:  0
the len of bestClustAss is:  40
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

可以看到进行了两次的划分,第一次最好的划分是在0簇,第二次划分是在1簇。
可视化如下图所示:

这里写图片描述

Mini Batch k-Means

在原始的K-means算法中,每一次的划分所有的样本都要参与运算,如果数据量非常大的话,这个时间是非常高的,因此有了一种分批处理的改进算法。
使用Mini Batch(分批处理)的方法对数据点之间的距离进行计算。
Mini Batch的好处:不必使用所有的数据样本,而是从不同类别的样本中抽取一部分样本来代表各自类型进行计算。n 由于计算样本量少,所以会相应的减少运行时间n 但另一方面抽样也必然会带来准确度的下降。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480999.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

刘挺 | 从知识图谱到事理图谱

本文转载自 AI科技评论。 在“知识图谱预见社交媒体”的技术分论坛上&#xff0c;哈尔滨工业大学刘挺教授做了题为“从知识图谱到事理图谱”的精彩报告。会后AI科技评论征得刘挺教授的同意&#xff0c;回顾和整理了本次报告的精彩内容。 刘挺教授 刘挺教授的报告内容分为四部分…

我对JVM的理解

一、JVM简介 JVM总体上是由类装载子系统&#xff08;ClassLoader&#xff09;、运行时数据区、执行引擎、内存回收这四个部分组成。 其中我们最为关注的运行时数据区&#xff0c;也就是JVM的内存部分则是由方法区&#xff08;Method Area&#xff09;、JAVA堆&#xff0…

【LeetCode】4月4日打卡-Day20-接雨水

描述 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图&#xff0c;在这种情况下&#xff0c;可以接 6 个单位的雨水&#xff08;蓝色部分表示雨水&a…

算法与数据结构--空间复杂度O(1)遍历树

大家好~我叫「小鹿鹿鹿」&#xff0c;是本卖萌小屋的第二位签约作&#xff08;萌&#xff09;者&#xff08;货&#xff09;。和小夕一样现在在从事NLP相关工作&#xff0c;希望和大家分享NLP相关的、不限于NLP的各种小想法&#xff0c;新技术。这是我的第一篇试水文章&#xf…

PCA主成分分析学习总结

大概主成分分析&#xff08;Principal components analysis&#xff0c;以下简称PCA&#xff09;是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA&#xff0c;下面我们就对PCA的原理做一个总结。首先…

技术动态 | 大规模中文概念图谱CN-Probase正式发布

本文转载自公众号知识工场。 历时多年的研发&#xff0c;复旦大学知识工场实验室正式推出大规模中文概念图谱——CN-Probase&#xff0c;用于帮助机器更好的理解人类语言。概念图谱中包含实体&#xff08;比如“刘德华”&#xff09;、概念&#xff08;比如“演员”&#xff09…

生产Docker应用重启排查经历

一、现象描述 近期&#xff0c;生产云平台监控发生Docker应用重启次数过多事故报警&#xff0c;经观察发现某些Docker应用不定期地出现重启现象&#xff0c;已严重影响服务正常提供 生产应用重启的判断条件&#xff1a;健康检查连续3次检查不通过 生产健康检查间隔时间设置为…

【Java】深入理解Java线程

1 相关概念 并发&#xff1a;两个或多个事件在同一时间段内发生【多个任务交替执行】 并行&#xff1a;两个或多个事件在同一时刻发生【多个任务同时执行】 进程&#xff1a;进入内存的程序 内存&#xff1a;所有应用程序都要进入到内存中执行 临时存储RAM 线程&#xff1a;进…

机器学习——多元线性回归分析(multiple regression)及应用

版权声明&#xff1a;本文为博主原创文章&#xff0c;未经博主允许不得转载。 https://blog.csdn.net/loveliuzz/article/details/78006493 </div><link rel"stylesheet" href"https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_vi…

肖仰华 | 知识图谱研究的回顾与展望

本文转载自公众号知识工场。 本文整理自2017年10月19日肖仰华教授在知识图谱前沿技术课程&#xff08;华东师范大学站&#xff09;所做的报告&#xff0c;报告的题目为《知识图谱研究的回顾与展望》。 大家好&#xff0c;很多人在对知识图谱的研究或者落地方面都表现出了极大的…

Java应用性能调优工具介绍及实践

一、背景 &#xff08;1&#xff09;、随着微服务架构的逐渐推广&#xff0c;一个大型的单个应用程序被拆分为数个微服务系统&#xff0c;这为研发人员的本地调试跟踪带来困难 &#xff08;2&#xff09;、在微服务架构中&#xff0c;由于业务的复杂性&#xff0c;常常一个业务…

Google、MS和BAT教给我的面试真谛

大家好呀&#xff0c;我是「小鹿鹿鹿」&#xff0c;我又来啦&#xff5e;&#xff5e;趁大家还有依稀印象赶紧乘热打铁&#xff5e;&#xff5e;这次聊一聊关于面试的一些小想法&#xff0c;希望和大家交流交流&#xff5e;&#xff5e;虽然资历尚浅&#xff0c;但是也面过不少…

AAAI 2018 论文 | 蚂蚁金服公开最新基于笔画的中文词向量算法

导读&#xff1a;词向量算法是自然语言处理领域的基础算法&#xff0c;在序列标注、问答系统和机器翻译等诸多任务中都发挥了重要作用。词向量算法最早由谷歌在2013年提出的word2vec&#xff0c;在接下来的几年里&#xff0c;该算法也经历不断的改进&#xff0c;但大多是仅适用…

甲子光年 | 为什么知识图谱终于火了?

本文转载自公众号甲子光年。如果知识是人类进步的阶梯&#xff0c;知识图谱就是AI进步的阶梯。作者&#xff5c;金丝猴编辑&#xff5c;甲小姐设计&#xff5c;孙佳栋微信&#xff5c;甲子光年 (ID:jazzyear)“知识图谱”相较于AI其他分支&#xff0c;似乎是最后一个热起来的赛…

Java多线程并发编程

一、线程池 1.1、什么是线程池 线程池是一种多线程的处理方式&#xff0c;利用已有线程对象继续服务新的任务&#xff08;按照一定的执行策略&#xff09;&#xff0c;而不是频繁地创建销毁线程对象&#xff0c;由此提高服务的吞吐能力&#xff0c;减少CPU的闲置时间。具体组成…

Step-by-step to Transformer:深入解析工作原理(以Pytorch机器翻译为例)

大家好&#xff0c;我是青青山螺应如是&#xff0c;大家可以叫我青青&#xff0c;工作之余是一名独立摄影师。喜欢美食、旅行、看展&#xff0c;偶尔整理下NLP学习笔记&#xff0c;不管技术文还是生活随感&#xff0c;都会分享本人摄影作品&#xff0c;希望文艺的技术青年能够喜…

知识图谱与智能问答基础理解

什么是知识图谱&#xff1f; 知识图谱本质上是语义网络&#xff0c;是一种基于图的数据结构&#xff0c;由节点(Point)和边(Edge)组成。在知识图谱里&#xff0c;每个节点表示现实世界中存在的“实体”&#xff0c;每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的…

鲍捷 | 知识图谱从 0 级到 10 级简化版

本文转载自公众号&#xff1a;文因学堂。文因学以前写过几个进阶指南&#xff0c;可能都太难&#xff0c;不接地气。这里重新写一个更实事求是、更便于工程落地的版本0级&#xff1a;掌握正则表达式、SQL、JSON和一门支持if-then-else的高级语言 —— 是的&#xff0c;这些不是…

Java并发优化思路

一、并发优化 1.1、Java高并发包所采用的几个机制 &#xff08;1&#xff09;、CAS&#xff08;乐观操作&#xff09; jdk5以前采用synchronized&#xff0c;对共享区域进行同步操作&#xff0c;synchronized是重的操作&#xff0c;在高并发情况下&#xff0c;会引起线…

他与她,一个两年前的故事

“ 有没有那个Ta&#xff0c;值得你一生去守护”1她能力出众&#xff0c;业务能力无人能出其左右&#xff1b;他资质平庸&#xff0c;扮演一个很不起眼的角色&#xff1b;她国色天香&#xff0c;是整个公司上上下下关注的焦点&#xff1b;他其貌不扬&#xff0c;甚至很多人根本…