NLP13-LDA引发的一系活动

这里写图片描述

摘要: 目标是想了解也学习LDA,寻找学习LDA相关资料,学习LDA相关的概率基础,对于LSI,pLsa,LDA作为主题模型的对比;然后到LDA本身,对LDA相关的概率基础进行学习。把相关资料疏理与集合起来。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481007.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

王昊奋 | 从聊天机器人到虚拟生命:AI技术的新机遇

本文转载自公众号中国人工智能学会。 10月12-13日,第七届中国智能产业高峰论坛在佛山开幕,在NLP与服务机器人专题论坛上,深圳狗尾草CTO王昊奋发表了主题为《从聊天机器人到虚拟生命:AI技术的新机遇》的精彩演讲。 以下是王昊奋老师…

【Java】如何理解Java中的异常机制?

1 异常的概念 程序在执行过程中出现非正常线性,导致JVM非正常停止异常不是语法错误 2 异常的分类 Throwable是所有错误或异常的超类Exception是编译期间异常(写代码时IDE会报错)RuntimeException时运行期异常,程序运行时出现的…

文本匹配相关方向总结(数据,场景,论文,开源工具)

Motivation 前不久小夕在知乎上写了一个回答《NLP有哪些独立研究方向》,于是有不少小伙伴来问分类和匹配的参考资料了,鉴于文本分类的资料已经超级多了,就不写啦(不过分类相关的tricks可以看之前写的这篇文章《文本分类重要tricks…

机器学习】LDA线性判别分析

【机器学习】LDA线性判别分析1. LDA的基本思想2. LDA求解方法3. 将LDA推广到多分类4. LDA算法流程5. LDA和PCA对比【附录1】瑞利商与广义瑞利商线性判别分析 (Linear Discriminant Analysis,LDA)是一种经典的线性学习方法,在二分类问题上因为最早由[Fish…

科普 | 动态本体简介

本文转载自知乎专栏知识图谱和智能问答。 1 近年来,随着语义Web的兴起,本体技术受到了广泛关注。很多大型跨国公司都开始研究本体技术。谷歌于2012年提出了知识图谱的项目,旨在利用本体技术来提高搜索的精度和更智能化的知识浏览。国内的互联…

文本匹配相关方向打卡点总结

Motivation前不久小夕在知乎上写了一个回答《NLP有哪些独立研究方向》[1],于是有不少小伙伴来问分类和匹配的参考资料了,鉴于文本分类的资料已经超级多了,就不写啦(不过分类相关的tricks可以看之前写的这篇文章《文本分类重要tric…

深入理解K-Means聚类算法

版权声明&#xff1a;本文为博主原创文章&#xff0c;未经博主允许不得转载。 https://blog.csdn.net/taoyanqi8932/article/details/53727841 </div><link rel"stylesheet" href"https://csdnimg.cn/release/phoenix/template/css/ck_htmledit…

刘挺 | 从知识图谱到事理图谱

本文转载自 AI科技评论。 在“知识图谱预见社交媒体”的技术分论坛上&#xff0c;哈尔滨工业大学刘挺教授做了题为“从知识图谱到事理图谱”的精彩报告。会后AI科技评论征得刘挺教授的同意&#xff0c;回顾和整理了本次报告的精彩内容。 刘挺教授 刘挺教授的报告内容分为四部分…

我对JVM的理解

一、JVM简介 JVM总体上是由类装载子系统&#xff08;ClassLoader&#xff09;、运行时数据区、执行引擎、内存回收这四个部分组成。 其中我们最为关注的运行时数据区&#xff0c;也就是JVM的内存部分则是由方法区&#xff08;Method Area&#xff09;、JAVA堆&#xff0…

【LeetCode】4月4日打卡-Day20-接雨水

描述 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图&#xff0c;在这种情况下&#xff0c;可以接 6 个单位的雨水&#xff08;蓝色部分表示雨水&a…

算法与数据结构--空间复杂度O(1)遍历树

大家好~我叫「小鹿鹿鹿」&#xff0c;是本卖萌小屋的第二位签约作&#xff08;萌&#xff09;者&#xff08;货&#xff09;。和小夕一样现在在从事NLP相关工作&#xff0c;希望和大家分享NLP相关的、不限于NLP的各种小想法&#xff0c;新技术。这是我的第一篇试水文章&#xf…

PCA主成分分析学习总结

大概主成分分析&#xff08;Principal components analysis&#xff0c;以下简称PCA&#xff09;是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA&#xff0c;下面我们就对PCA的原理做一个总结。首先…

技术动态 | 大规模中文概念图谱CN-Probase正式发布

本文转载自公众号知识工场。 历时多年的研发&#xff0c;复旦大学知识工场实验室正式推出大规模中文概念图谱——CN-Probase&#xff0c;用于帮助机器更好的理解人类语言。概念图谱中包含实体&#xff08;比如“刘德华”&#xff09;、概念&#xff08;比如“演员”&#xff09…

生产Docker应用重启排查经历

一、现象描述 近期&#xff0c;生产云平台监控发生Docker应用重启次数过多事故报警&#xff0c;经观察发现某些Docker应用不定期地出现重启现象&#xff0c;已严重影响服务正常提供 生产应用重启的判断条件&#xff1a;健康检查连续3次检查不通过 生产健康检查间隔时间设置为…

【Java】深入理解Java线程

1 相关概念 并发&#xff1a;两个或多个事件在同一时间段内发生【多个任务交替执行】 并行&#xff1a;两个或多个事件在同一时刻发生【多个任务同时执行】 进程&#xff1a;进入内存的程序 内存&#xff1a;所有应用程序都要进入到内存中执行 临时存储RAM 线程&#xff1a;进…

机器学习——多元线性回归分析(multiple regression)及应用

版权声明&#xff1a;本文为博主原创文章&#xff0c;未经博主允许不得转载。 https://blog.csdn.net/loveliuzz/article/details/78006493 </div><link rel"stylesheet" href"https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_vi…

肖仰华 | 知识图谱研究的回顾与展望

本文转载自公众号知识工场。 本文整理自2017年10月19日肖仰华教授在知识图谱前沿技术课程&#xff08;华东师范大学站&#xff09;所做的报告&#xff0c;报告的题目为《知识图谱研究的回顾与展望》。 大家好&#xff0c;很多人在对知识图谱的研究或者落地方面都表现出了极大的…

Java应用性能调优工具介绍及实践

一、背景 &#xff08;1&#xff09;、随着微服务架构的逐渐推广&#xff0c;一个大型的单个应用程序被拆分为数个微服务系统&#xff0c;这为研发人员的本地调试跟踪带来困难 &#xff08;2&#xff09;、在微服务架构中&#xff0c;由于业务的复杂性&#xff0c;常常一个业务…

Google、MS和BAT教给我的面试真谛

大家好呀&#xff0c;我是「小鹿鹿鹿」&#xff0c;我又来啦&#xff5e;&#xff5e;趁大家还有依稀印象赶紧乘热打铁&#xff5e;&#xff5e;这次聊一聊关于面试的一些小想法&#xff0c;希望和大家交流交流&#xff5e;&#xff5e;虽然资历尚浅&#xff0c;但是也面过不少…

AAAI 2018 论文 | 蚂蚁金服公开最新基于笔画的中文词向量算法

导读&#xff1a;词向量算法是自然语言处理领域的基础算法&#xff0c;在序列标注、问答系统和机器翻译等诸多任务中都发挥了重要作用。词向量算法最早由谷歌在2013年提出的word2vec&#xff0c;在接下来的几年里&#xff0c;该算法也经历不断的改进&#xff0c;但大多是仅适用…