手把手教你协方差分析的SPSS操作

手把手教你协方差分析的SPSS操作

2017-04-27

手把手教你协方差分析的SPSS操作

一、问题与数据

某研究将73例脑卒中患者随机分为现代理疗组(38例)和传统康复疗法组(35例)进行康复治疗,采用Fugl-Meyer运动功能评分法(FMA)分别记录治疗前、后的运动功能情况,部分数据如下。试问现代理疗和传统康复治疗对脑卒中患者运动功能的改善是否有差异?

二、对数据结构的分析

整个数据资料涉及2组患者(共73例),每名患者有康复治疗前、后2个数据,测量指标为FMA评分。由于治疗前的FMA分数会对治疗后的FMA分数产生影响,因此在比较现代理疗和传统康复疗法对患者运动功能的改善情况时,应把治疗前的FMA评分作为协变量进行调整,若满足协方差分析的应用条件,可采用完全随机设计的协方差分析。

协方差分析可以控制混杂因素对处理效应的影响,提高假设检验的效能和分析结果的精度。其应用条件包括:受试对象的观测指标满足独立性,各处理组的观测指标均来自正态分布总体,且方差相等。需要控制的协变量(自变量)与观测指标(因变量)之间存在线性关系,且每个组用协变量(自变量)与观测指标(因变量)进行直线回归时,回归直线的斜率相同(即各组回归直线平行)。

协方差分析相关的假设检验

1. 各组回归直线是否平行的假设检验;

2. 各组观测指标方差是否相同的假设检验;

3. 协变量(自变量)与观测指标(因变量)之间是否存在线性关系的假设检验;

4. 控制协变量的影响后,各组调整的均数是否相等的假设检验。

三、SPSS分析方法

1、数据录入SPSS

(组别1=现代理疗组,组别2=传统康复疗法组,FMA1=治疗前FMA评分,FMA2=治疗后FMA评分)

2、选择Analyze→General Linear Model→Univariate

3、选项设置

A. 主对话框设置:选择观测指标(FMA2)到Dependent Variable窗口,组别变量到Fixed Factor(s)窗口,协变量(FMA1)到Covariate(s)窗口。

B. Model设置:点击Model按钮→选择Custom选项→将组别和FMA1分别放入Model窗口→将组别和FMA1同时选中(按住Ctrl后分别点击“组别”和“FMA1”),选入Model窗口构成交互项→点击Continue返回主对话框→OK。

放入分组变量与协变量的交互项是为了检验各组回归直线是否平行,若交互项结果满足P>0.05,则尚不能认为各组协变量与观测指标之间的回归直线斜率不等。在各组回归直线平行的条件成立时,才可以考虑进一步使用协方差分析。当处理因素与协变量有交互作用,即各组回归直线平行的条件不成立时(P<0.05),应对资料进一步处理或采用其他方法。

得到结果后,这一步仅需要查看Tests of Between-Subjects Effects的结果,组别*FMA1一行为各组回归直线是否平行进行假设检验的结果。F=0.703,P(Sig.)=0.405 >0.05,尚不能认为两组治疗前FMA评分与治疗后FMA评分之间回归直线的斜率不等,即满足回归直线平行的条件(这一步是协方差分析的假设检验1)。因此,可以做协方差分析,接下来需要重复上述步骤2、步骤3,并在Model设置中,将分组变量与协变量的交互项从模型中去掉,如下图所示。

C. Options设置:点击Options按钮→在Display部分勾选Descriptive statistics(给出各组及总的例数、均数和标准差)、Homogeneity tests(给出方差齐性检验结果)、Parameter estimates(给出协方差模型的各个参数)→将组别变量放入Display means for窗口(给出各组调整均数的估计值)→点击Continue返回主对话框→OK。

四、结果解读

Descriptive Statistics表格给出了治疗后FMA评分的部分统计信息,包括两组及总的例数(N)、均数(Mean)和标准差(Std. Deviation)。

Levene’s Test of Equality of Error Variances表格给出了方差齐性检验的结果,F=0.199,P(Sig.)=0.657,尚不能认为两组治疗后FMA评分的方差不等,即满足方差齐的条件(这一步是协方差分析的假设检验2)。

Tests of Between-Subjects Effects表格给出了协方差分析结果(不含交互项),其中FMA1一行为协变量与观测指标之间是否存在线性关系的假设检验结果。F=134.213,P(Sig.)<0.001,可以认为治疗前FMA评分与治疗后FMA评分之间存在线性关系,即满足线性关系的条件(这一步是协方差分析的假设检验3)。

组别一行为各组观测指标调整的均数是否相等的假设检验结果。F=7.866,P(Sig.)=0.007 <0.05,两组之间治疗后FMA评分的差异具有统计学意义,说明现代理疗和传统康复治疗对脑卒中患者运动功能的改善是有差异的。(这一步是协方差分析的假设检验4。协方差分析需要满足前3个假设后,才能根据假设检验4推断研究问题。如果前3个假设不满足,则不能进行协方差分析)

Parameter Estimates表格给出了协方差模型参数估计的结果。本例中的协方差模型为:

Estimated Marginal Means表格给出了协方差分析时观测指标的调整均数,各组调整的均数是利用参数估计的结果计算的。用各组FMA1的总平均数代入上面的协方差模型,即可得到观测指标的调整均数。

五、撰写结论

根据基线运动功能调整后,现代理疗方法对脑卒中患者进行康复治疗的运动功能得分为55(95% CI:52-57),传统康复疗法的运动功能得分为50(95% CI:48-53)。两种方法对脑卒中患者运动功能改善的差异具有统计学意义,现代理疗方法优于传统康复疗法(F=7.866,P=0.007)。

六、延伸阅读

本例如果用康复治疗前、后的FMA评分相减,生成一个差值,再对两组间的差值进行两样本均数比较的t检验,其结果如何呢?

t=2.527,P=0.014,两组间FMA评分变化的差异具有统计学意义。虽然t检验得出的结论与协方差分析的结论相同,但是把前、后测量值转换为差值之后,原有的数据信息也会有所损失。而且,如果两组间基线值有差异,差值更不能作为判别组间差别的依据。因此,将基线值作为协变量进行校正的协方差分析是科学可行的常用方法。数据分析师培训


完 谢谢观看

上一篇:CDA数据分析师还原真相!给数据分析领 …


下一篇:CDA认证再升一档!与国家共同推进大数 …

数据分析师 SPSS
分享
收藏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480917.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

我对DevOps的理解

一、DevOps的意图 究竟什么是DevOps? 要想回答这个问题&#xff0c;首先要明确DevOps这个过程参与的人员是谁&#xff1f;即开发团队和IT运维团队&#xff01;那么&#xff0c;DevOps的意图是什么呢&#xff1f;即在两个团队之间&#xff0c;建立良好的沟通和协作&#xff0c;…

【JavaWeb】JavaScript基础篇+高级篇

文章目录1 介绍2 ECMAScript2.1 基本语法2.2 基本对象3 BOM3.1 window窗口对象3.2 location地址栏对象3.3 history历史记录对象4 DOM4.1 概念4.2 核心DOM4.2.1 Document对象4.2.2 Element对象4.2.3 节点对象4.2.4 案例&#xff1a;动态表格4.2.5 内容切换4.2.6 样式设置5 事件5…

万万没想到,我的炼丹炉玩坏了

一只小狐狸带你解锁NLP/ML/DL秘籍作者&#xff1a;夕小瑶前记众所周知&#xff0c;夕小瑶是个做NLP的小可爱。虽然懂点DL框架层知识&#xff0c;懂点CUDA和底层&#xff0c;但是我是做算法的哎&#xff0c;平时debug很少会遇到深度学习框架层的bug&#xff08;上一次还是三年前…

Reactor三种线程模型与Netty线程模型

一、Reactor三种线程模型 1.1、单线程模型 单个线程以非阻塞IO或事件IO处理所有IO事件&#xff0c;包括连接、读、写、异常、关闭等等。单线程Reactor模型基于同步事件分离器来分发事件&#xff0c;这个同步事件分离器&#xff0c;可以看做是一个单线程的while循环。下图描述了…

图解Transformer-一篇文章看懂transformer

原文标题&#xff1a;The Illustrated Transformer 原文链接&#xff1a;https://jalammar.github.io/illustrated-transformer/ 论文地址&#xff1a;https://arxiv.org/abs/1706.03762 前言 Attention这种机制最开始应用于机器翻译的任务中&#xff0c;并且取得了巨大的成就…

【JavaWeb】前端框架之Bootstrap

文章目录1 概念2 快速入门3 响应式布局4 CSS样式和JS插件1 概念 BootStrap是前端开发框架&#xff0c;基于HTML、CSS、JavaScript。 优点&#xff1a; 定义了很多CSS样式和JS插件&#xff0c;可以直接使用。响应式布局&#xff1a;同一套页面可以兼容不同分辨率的设备。 2 快…

号外号外,第一届沙雕项目竞赛,这些项目以数万Star惨获提名

一只小狐狸带你解锁NLP/ML/DL秘籍正文来源&#xff1a; Python空间 好看的皮囊千篇一律&#xff0c;有趣的灵魂没有底线。作为全球最大的同性交友网站&#xff0c;GayHub GitHub 上不止有鲜活的代码&#xff0c;秃头的算法&#xff0c;还有很多拥有有&#xff08;sha&#…

尼克 | 从专家系统到知识图谱

本文节选自尼克老师的《人工智能简史》第 3 章&#xff1a;从专家系统到知识图谱。从第一个专家系统 DENDRAL 到语义网再到谷歌的开源知识图谱&#xff0c;对知识图谱的发展历程进行了全面回顾和深度点评。尼克&#xff0c;早年曾任职哈佛和惠普&#xff1b;后创业投资&#xf…

Google 资深软件工程师 LeetCode 刷题笔记首次公开

BAT 等国内的一线名企&#xff0c;在招聘工程师的过程中&#xff0c;对算法和数据结构都会重点考察。但算法易学难精&#xff0c;我的很多粉丝技术能力不错&#xff0c;但面试时总败在算法这一关&#xff0c;拿不到好 Offer。但说实话&#xff0c;数据结构和算法花点时间&#…

论文浅尝 | Learning with Noise: Supervised Relation Extraction

Luo B, Feng Y, Wang Z, et al. Learning withNoise: Enhance Distantly Supervised Relation Extraction with Dynamic TransitionMatrix[C]// Meeting of the Association for Computational Linguistics.2017:430-439.链接&#xff1a;http://www.aclweb.org/anthology/P/P1…

项目架构之传统三层架构和领域模型三层架构

一、架构之传统三层架构 传统三层架构是一种软件架构&#xff0c;是一种典型的、基于贫血模型的、面向过程的JavaWeb分层方式。该架构分为以下三个层次&#xff1a; 数据访问层&#xff08;DAL - Data Access Layer&#xff09;即对包括数据库在内的数据源进行操作的部分。业务…

限定域文本语料的短语挖掘(Phrase Mining)

一只小狐狸带你解锁NLP/ML/DL秘籍正文来源&#xff1a;丁香园大数据前言短语挖掘&#xff08;Phrase Mining&#xff09;的目的在于从大量的文本语料中提取出高质量的短语&#xff0c;是NLP领域中基础任务之一。短语挖掘主要解决专业领域&#xff08;如医疗、科技等&#xff09…

论文浅尝 | Hike: A Hybrid Human-Machine Method for Entity Alignment

Zhuang Y,Li G, Zhong Z, et al. Hike: A Hybrid Human-Machine Method for Entity Alignmentin Large-Scale Knowledge Bases[C]// ACM, 2017:1917-1926. ( CIKM 2017 )论文链接&#xff1a;http://dbgroup.cs.tsinghua.edu.cn/ligl/crowdalign.pdfMotivation随着语义网络的迅…

TCC分布式实现原理及分布式应用如何保证高可用

一、业务场景介绍 咱们先来看看业务场景&#xff0c;假设你现在有一个电商系统&#xff0c;里面有一个支付订单的场景。 那对一个订单支付之后&#xff0c;我们需要做下面的步骤&#xff1a; 更改订单的状态为“已支付”扣减商品库存给会员增加积分创建销售出库单通知仓库发货…

IJCAI 2018:中科院计算所:增强对话生成一致性的序列到序列模型

IJCAI 2018&#xff1a;中科院计算所&#xff1a;增强对话生成一致性的序列到序列模型文章来源&#xff1a;企鹅号 - 读芯术你和“懂AI”之间&#xff0c;只差了一篇论文号外&#xff01;又一拨顶会论文干货来袭&#xff01;2018年6月9-10日&#xff0c;代表学术界和工业界的顶…

一时学习一时爽,持续学习持续爽

一只小狐狸带你解锁NLP/ML/DL秘籍作者&#xff1a;小鹿鹿鹿 net~net~你围棋下的这么好&#xff0c;斗地主应该也不错吧不敢当不敢当但是人家柯洁才得了欢乐斗地主全国第一呢那让老夫也学习学习吧~巴拉巴拉小魔仙Training。。。net net stop&#xff01;你怎么斗地主还没学会&am…

基于“大中台+小前台”思想的电商系统总体架构设计

一、架构总原则 1. 大中台小前台的架构思路 2. 业务中台采用领域驱动设计&#xff08;DDD&#xff09;&#xff0c;在其上构建业务能力SAAS&#xff0c;持续不断进行迭代演进。 3. 平台化定位&#xff0c;进行了业务隔离设计&#xff0c;方便一套系统支撑不同玩法的业务类型和便…

论文写作葵花宝典

一只小狐狸带你解锁NLP/DL/ML秘籍作者&#xff1a;小鹿鹿鹿论文写作套路老板说&#xff1a;写论文是有套路的老板说&#xff1a;introduction写好了&#xff0c;论文就成功了一半老板说&#xff1a;你的motivation是什么&#xff0c;contribution又是啥&#xff1f;小夕说&…

李涓子 | 机器智能加速器:大数据环境下知识工程的机遇和挑战

本文转载自公众号&#xff1a;数据派THU。 导读&#xff1a;知识图谱已经成为推动人工智能发展的核心驱动力之一。本文选自清华大学计算机科学与技术系教授、清华-青岛数据科学研究院科技大数据研究中心主任李涓子老师于201…

【HTML/CSS】CSS盒模型及其理解

1 盒模型 概念&#xff1a;CSS盒模型本质是一个盒子&#xff0c;包括&#xff1a;外边距margin、边框border、内边距padding、内容content 分类&#xff1a;标准盒模型&#xff08;W3C&#xff09;和怪异盒模型&#xff08;IE&#xff09; 标准盒模型&#xff1a;width的值就是…