论文浅尝 | 一种用于新闻推荐的深度知识感知网络

640?wx_fmt=png

Citation: Wang H, Zhang F, Xie X, et al. DKN: Deep Knowledge-Aware Networkfor News Recommendation[J]. 2018.

Published at: The 27th International Conference on World Wide Web (WWW'18)

URLhttps://arxiv.org/pdf/1801.08284.pdf


Motivation

推荐系统最初是为了解决互联网信息过载的问题,帮助用户针推荐其感兴趣的内容并给出个性化的建议。新闻具有高度时效性和话题敏感性的特点,一般而言新闻的热度不会持续太久,而且用户关注的话题也多是有针对性的。其次,新闻的语言高度浓缩,往往包含很多常识知识,而目前基于词汇共现的模型,很难发现这些潜在的知识。因此这篇文章提出了 DKN,将知识表示融合到新闻推荐系统中。

DKN Model

首先看一下 DKN 模型的框架,如下图所示。

640?wx_fmt=png

DKN 模型主要分成三部分:知识抽取(Knowledge Distillation)、知识感知卷积神经网络(KCNN: Knowledge-aware CNN)、用于抽取用户兴趣的注意力网络(Attention Network: Attention-based UserInterest Extraction)。下面对这三部分进行详细的介绍。

1.    知识抽取

知识抽取模块的输入是一些用户点击的新闻标题以及候选新闻的标题。整个过程可以参见下图。

640?wx_fmt=png

首先将标题拆成一组词,然后将标题中的词与知识库的实体进行链接。如果可以找到词所对应的实体,那么再接着找出距离链接实体一跳之内的所有邻接实体,并将这些邻接实体称之为上下文实体。寻找上下文实体的过程如下图所示。

640?wx_fmt=png

这样,根据新闻标题可以得到三部分的信息,分别是词,链接实体,以及上下文实体。利用 word2vec 模型可以得到词的向量表示,利用知识图谱嵌入模型(这里用的 TransD)可以得到知识库实体的向量表示。其中,链接实体的表示就是 TransD 的训练结果,如果链接不上就 padding。上下文实体的表示就是对多个实体的表示进行平均,如果前一步没有链接实体这里也同样 padding。由此分别得到了词、链接实体、上下文实体的向量表示。

2.    知识感知卷积神经网络 KCNN

在得到新闻标题三方面信息的向量表示之后,下一步是要将它们放到同一个模型中进行训练。但是这里存在的问题是,三者不是通过同一个模型学出来的,直接放到同一个向量空间不合理。这篇文章使用的方法是,先把链接实体、上下文实体的向量表示通过一个非线性变换映射到同一个向量空间:

640?wx_fmt=png

640?wx_fmt=png

然后类似于图像中 RGB 的三通道,将词、链接实体、上下文实体的向量表示作为CNN多通道的输入。这样 KCNN 的输入就可以表示为

640?wx_fmt=png

然后通过卷积操作得到新闻标题的向量表示

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

KCNN 的架构可以参加下图。这里还用了不同大小的卷积核进行卷积。

640?wx_fmt=png

3.    注意力网络

给定用户 i 的点击历史新闻:

640?wx_fmt=png

通过 KCNN 得到它们的向量表示:

640?wx_fmt=png

采用一个 DNN 作为注意力网络和一个 softmax 函数计算归一化影响力权重

640?wx_fmt=png

这样可以得到用户i关于候选新闻ti的向量表示:

640?wx_fmt=png

用户i点击新闻 tj 的概率由另一个 DNN 预测

640?wx_fmt=png

Experiments

数据集

这篇文章的数据来自 bing 新闻的用户点击日志,包含用户 id,新闻 url,新闻标题,点击与否(0未点击,1点击)。搜集了 2016 10 16 日到 2017 7 11 号的数据作为训练集。2017712号到811日的数据作为测试集合。使用的知识图谱数据是 Microsoft Satori。以下是一些统计数据以及分布。

640?wx_fmt=png

640?wx_fmt=png

实验结果

实验用的评价指标是 AUC F1

对比实验结果如下表所示。

640?wx_fmt=png

下面这张表展示了 DKN 本身的一些变量对实验结果的影响

640?wx_fmt=png

笔者认为,DKN 的特点是融合了知识图谱与深度学习,从语义层面和知识两个层面对新闻进行表示,而且实体和单词的对齐机制融合了异构的信息源,能更好地捕捉新闻之间的隐含关系。利用知识提升深度神经网络的效果将会是一个不错的方向。


本文作者邓淑敏浙江大学计算机学院2017级直博生,研究方向为知识图谱与文本联合表示学习,动态知识图谱,时序预测。




OpenKG.CN


中文开放知识图谱(简称OpenKG.CN)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

转载须知:转载需注明来源“OpenKG.CN”、作者及原文链接。如需修改标题,请注明原标题。

 

点击阅读原文,进入 OpenKG 博客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480631.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL数据库主从同步的3种一致性方案实现,及优劣比较

数据主从同步的由来 互联网的很多业务,特别是在高并发的场景下,基本都是读远远大于写,如果数据库读和写的压力都同在一台主机上,这显然不太合理。 于是,把一台数据库主机分为单独的一台写主库(主要负责写操…

中文复合(条件事件、因果事件、顺承事件、反转事件)事理图谱构建项目

ComplexEventExtraction chinese compound event extraction,中文复合事件抽取,包括条件事件、因果事件、顺承事件、反转事件等事件抽取,并形成事理图谱。 项目地址:https://github.com/liuhuanyong/ComplexEventExtraction 关于…

对话系统的简单综述及应用智能客服

https://zhuanlan.zhihu.com/p/52899436 对话系统的简单综述及应用智能客服“天猫精灵,放歌”,”送你一首好听的歌《XXX》“,《XXX》音乐响起...相信有天猫精灵的用户对此场景都不陌生,或者语音操作其他智能音箱设备,比…

硬核推导Google AdaFactor:一个省显存的宝藏优化器

一只小狐狸带你解锁炼丹术&NLP秘籍作者:苏剑林(来自追一科技,人称“苏神”)前言自从GPT、BERT等预训练模型流行起来后,其中一个明显的趋势是模型越做越大,因为更大的模型配合更充分的预训练通常能更有效…

领域应用 | 用知识图谱玩唐诗,“唐诗别苑”附庸端午节的别样风雅!

本文转载自公众号:互联网教育国家工程实验室 。 端午节在每年的农历五月初五,又称端阳节、午日节、五月节等。端午节起源于中国,是古代百越一带崇拜龙图腾的部族举行图腾祭祀的节日。五月初五也是缅…

参加完阿里蚂蚁金服Java中间件6轮面试题!6点血泪总结~

蚂蚁金服一面:分布式架构 50分钟 1、个人介绍加项目介绍20分钟 2、微服务架构是什么,它的优缺点? 3、ACID CAP BASE理论 4、分布式一致性协议,二段、三段、TCC,优缺点 5、RPC过程 6、服务注册中心宕机了怎么办&am…

特定热点事件监控与分析项目

EventMonitor Event monitor based on online news corpus built by Baidu search enginee using event keyword for event storyline and analysis,基于给定事件关键词,采集事件资讯,对事件进行挖掘和分析。 项目地址:https://g…

深度好文:2018 年 NLP 应用和商业化调查报告

、 深度好文:2018 年 NLP 应用和商业化调查报告 Debra 阅读数:7650 2019 年 1 月 11 日近年来,自然语言处理技术已经取得了长足进步,成为应用范围最广泛,也是最为成熟的 AI 技术之一。但实际上,自然语言处理…

论文浅尝 | 通过多原型实体指称向量关联文本和实体

Cao Y,Huang L, Ji H, et al. Bridge Text and Knowledge by Learning Multi-Prototype Entity Mention Embedding[C]// Meeting of the Association for Computational Linguistics. 2017:1623-1633.导读:学术界近两年来十分关注如何将文本等非结构化数据和知识库等…

【面试必备】奉上最通俗易懂的XGBoost、LightGBM、BERT、XLNet原理解析

一只小狐狸带你解锁 炼丹术&NLP 秘籍在非深度学习的机器学习模型中,基于GBDT算法的XGBoost、LightGBM等有着非常优秀的性能,校招算法岗面试中“出镜率”非常高。这些经典的机器学习算法不仅是数据科学竞赛神器,在工业界中也被广泛地使用。…

2019手把手教你Java面试通关BAT

金三银四俗称跳槽黄金季,很多同学都想趁着这段时间拿高薪,去更牛逼的公司工作,认识更多大牛,提升自己的职场竞争力。 那怎样才能通过BAT面试官的考核?怎样成为一名Offer收割机? 之前讲过收割Offer有一个最…

特定领域因果事件图谱构建项目

CausalityEventExtraction self complement of templated based causality event extraction 基于因果关系知识库的因果事件图谱构建demo 项目地址:https://github.com/liuhuanyong/CausalityEventGraph 项目介绍 现实社会是个逻辑社会,大量的逻辑即逻…

斯坦福李纪为博士毕业论文:让机器像人一样交流

https://cloud.tencent.com/developer/article/1120019 选自GitHub机器之心编译自然语言处理(NLP)是人工智能领域下的一个庞大分支,其中面临很多机遇与挑战。斯坦福大学李纪为博士在他的毕业论文《Teaching Machines to Converse》中对 NLP 领…

陈华钧 | 知识图谱构建,将成为智能金融的突破口

本文转载自公众号:恒生技术之眼。“ 我们太容易被机器下棋这样的事所吸引,以至于现在谈到人工智能就基本都是在说机器学习和深度学习,而相对忽视了与人工智能相关的另外一个重要的方向:知识图谱。——陈华钧”尽管人工智能依靠机器…

万字长文梳理CTR点击预估模型发展过程与关系图谱

背景在推荐、搜索、广告等领域,CTR(click-through rate)预估是一项非常核心的技术,这里引用阿里妈妈资深算法专家朱小强大佬的一句话:“它(CTR预估)是镶嵌在互联网技术上的明珠”。本篇文章主要…

基于携程游记的出行领域顺承事件图谱项目

EvolutionaryEventGraph 项目地址:https://github.com/liuhuanyong/SequentialEventExtration Evolutionary Event Graph based on Travel note crawled from XieCheng,基于50W携程出行攻略的顺承事件抽取与事件图谱构建. 项目来源 目前,以谓词性短语…

5步教你成功求职进入BAT

有读者朋友希望我能写一部分关于BAT内部的文章,比如,怎么进入BAT,BAT内部的项目的流程,有挑战性的项目实践,大概是怎么样的? 我希望用这篇文章开启整个进入BAT系列篇,让大家更好的了解BAT内部的…

机器阅读理解任务综述

http://forum.yige.ai/thread/27 2016年 <div class"markdown-body" id"emojify">作者&#xff1a;林鸿宇 韩先培 简介 自然语言处理的长期目标是让计算机能够阅读、处理文本&#xff0c;并且理解文本的内在含义。理解&#xff0c;意味着计算机在接…

论文浅尝 | 基于知识图谱子图匹配以回答自然语言问题

Citation: Hu,S., Zou, L., Yu, J. X., Wang, H., & Zhao, D. (2018). Answering natural language questions by subgraph matching over knowledge graphs. IEEE Transactions on Knowledge & Data Engineering, PP(99), 1-1.动机对于基于知识图谱的事实性问答&#…

新闻文本内容知识图谱表示项目

TextGrapher 项目地址&#xff1a;https://github.com/liuhuanyong/TextGrapher Text Content Grapher based on keyinfo extraction by NLP method。输入一篇文档&#xff0c;将文档进行关键信息提取&#xff0c;进行结构化&#xff0c;并最终组织成图谱组织形式&#xff0c;…