论文浅尝 | 通过多原型实体指称向量关联文本和实体

640?wx_fmt=png

Cao Y,Huang L, Ji H, et al. Bridge Text and Knowledge by Learning Multi-Prototype Entity Mention Embedding[C]// Meeting of the Association for Computational Linguistics. 2017:1623-1633.


导读:学术界近两年来十分关注如何将文本等非结构化数据和知识库等结构化数据映射到相同的语义空间中,然而在相同的语义空间中建模的过程会受到文本中实体指称(mention)歧义的影响,即文本中的同一个姓名如迈克尔·乔丹可能指的是著名的篮球运动员乔丹也可能是我们敬仰的教授乔丹,那么在语义空间中,因为他们的字面表达相同而将其建模成为统一的向量显然是不合理的。因此,文中提出了一种新的mention向量表示的学习框架Multi-Prototype Entity Mention Embedding (MPME),它可以根据实体指称所对应的词义的不同而联合文本和知识库学习到不同的表示。此外,文中提出了一种类似于语言模型的方法解决了实体指称的语义消歧问题。最后,实验部分利用实体链接任务作为MPME的应用场景,取得了当前最优的实验效果。

 

研究动机


当前有相当多的工作研究如何将文本和知识库进行关联建模,显然这样会为自然语言处理及知识库相关的研究任务带来比较大的性能提升。当前的研究思路可以粗略地分为两类,其一是利用深度神经网络将实体和词语直接在统一的语义空间中进行建模,但这类方法比较受限于计算复杂度以及语料的规模。其二是分别对知识库中的实体以及文本中的实体指称进行建模,并且利用 wiki 百科中的外链获取 mention entity 之间的关联,相当于在各自训练的过程中加入了一层约束用于确保他们在各自的语义空间中有相似的表达。上述两类方法都会面对同一个实体指称可能对应到多个实体的歧义问题,即文本中提到的迈克尔乔丹可能是教授也可能是运动员或其他不甚知名的人,也会面临多个实体指称对应同一个实体的歧义问题,即文本中出现的姚明和小巨人可能指的同一个人。因此本文着手解决实体指称的语义歧义问题,类似于传统的实体链接任务。

 

创新点


本文提出了一种新型的实体指称表示学习方法 MPME,结合文本信息以及知识库信息学习实体指称的表示;此外,文中还提出了一种基于语言模型的决策方法来进行实体指称的语义消歧。

 

模型


640?wx_fmt=png

MPME 框架结构示意图


如图所示,模型可以大致分成两个部分。

其一是表示学习部分,通过 Word Embedding Knowledge Graph Embedding 对文本和知识库分别进行建模,其中每个实体指称都对应着一个实体集合,也就是它们潜在的语义。在Entity Representation Learning中,训练的目标是有相似的关联实体的实体之间更相似。在Text Representation Learning中,实体指称将和其他词汇一起通过 Skip-Gram 模型进行训练,在Mention Representation Learning中,实体指称被替换为相应的词义(sense),上下文的表示来自文本表示学习部分,实体的表示来自知识库表示学习部分,目标是得到更好的实体指称的表达sj*,使得根据上下文信息,能够确定实体指称所对应的语义(对应哪个实体)。

其二是测试场景下的消歧部分,模型会综合考虑实体指称对应的上下文信息,以及实体指称对应各个语义的统计概率分布进行计算。

 

实验结果


文章的目标是训练得到一组高质量的实体指称向量,仍然没有跳出表示学习的框架,因此实验部分首先比较了采用$MPME$之后,训练得到的向量的相似实体指称都有哪些,以及从 mention embedding 和相应的 entity embedding余弦距离的角度进行了分析,各项指标相对对比模型SPME提高了1%左右,这一部分就不做赘述了。

同时,文章利用 mention embedding 在实体链接任务上进行了验证,在AIDA数据集上,不管是有监督的实体链接任务还是无监督的实体链接任务,利用 MPME 均取得了相较于之前最好结果3%左右的提升。


启发


mention 之间的信息

本文中把文本和知识库分别单独进行建模,mention 的建模过程中比较多的考虑 mentionentity 之间的关联,所谓的上下文更多的是以词窗口内词汇的形式出现的,而不是上下文中其他的mention,因此有可能会忽略一些关键的信息。传统的实体链接方法中比较多使用的一类是基于图的算法,其优势便在于能够更充分的发掘 mention mention 之间,mentionentity 以及 entityentity 直接的结构关联信息,利用这些信息进行消歧已经足够有效(体现在实体链接任务的准确率上),那么也可以尝试利用图结构更好地学习 mention 的表示。

潜在的问题在于,假设 mention 所对应的两个歧义实体属于同一个 category,那么它们会共享十分相似的上下文,通过本文所题出的方法将不能很好的解决这个问题。比如两只都叫做旺财的狗,它们的日常表现应该会比较相似,唯一不同的可能就只有它们的主人不同,这一点需要上下文中 mention 的参与,共同建模。

 

未登录词的处理

实际的应用场景中,未登录mention的数目理应远多于已经训练的 mention 的数目,这样才能体现出模型或方法的泛化能力,这也为我们提出更加 generalframework 提出的新的需求,或者说,训练的过程尽可能简单,所需的额外信息尽可能的少,对未登录词的发现更加友好的框架。

 

论文笔记整理:吴桐桐,东南大学博士生,研究方向为自然语言问答。



OpenKG.CN


中文开放知识图谱(简称OpenKG.CN)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

转载须知:转载需注明来源“OpenKG.CN”、作者及原文链接。如需修改标题,请注明原标题。

 

点击阅读原文,进入 OpenKG 博客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480622.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【面试必备】奉上最通俗易懂的XGBoost、LightGBM、BERT、XLNet原理解析

一只小狐狸带你解锁 炼丹术&NLP 秘籍在非深度学习的机器学习模型中,基于GBDT算法的XGBoost、LightGBM等有着非常优秀的性能,校招算法岗面试中“出镜率”非常高。这些经典的机器学习算法不仅是数据科学竞赛神器,在工业界中也被广泛地使用。…

2019手把手教你Java面试通关BAT

金三银四俗称跳槽黄金季,很多同学都想趁着这段时间拿高薪,去更牛逼的公司工作,认识更多大牛,提升自己的职场竞争力。 那怎样才能通过BAT面试官的考核?怎样成为一名Offer收割机? 之前讲过收割Offer有一个最…

特定领域因果事件图谱构建项目

CausalityEventExtraction self complement of templated based causality event extraction 基于因果关系知识库的因果事件图谱构建demo 项目地址:https://github.com/liuhuanyong/CausalityEventGraph 项目介绍 现实社会是个逻辑社会,大量的逻辑即逻…

斯坦福李纪为博士毕业论文:让机器像人一样交流

https://cloud.tencent.com/developer/article/1120019 选自GitHub机器之心编译自然语言处理(NLP)是人工智能领域下的一个庞大分支,其中面临很多机遇与挑战。斯坦福大学李纪为博士在他的毕业论文《Teaching Machines to Converse》中对 NLP 领…

陈华钧 | 知识图谱构建,将成为智能金融的突破口

本文转载自公众号:恒生技术之眼。“ 我们太容易被机器下棋这样的事所吸引,以至于现在谈到人工智能就基本都是在说机器学习和深度学习,而相对忽视了与人工智能相关的另外一个重要的方向:知识图谱。——陈华钧”尽管人工智能依靠机器…

万字长文梳理CTR点击预估模型发展过程与关系图谱

背景在推荐、搜索、广告等领域,CTR(click-through rate)预估是一项非常核心的技术,这里引用阿里妈妈资深算法专家朱小强大佬的一句话:“它(CTR预估)是镶嵌在互联网技术上的明珠”。本篇文章主要…

基于携程游记的出行领域顺承事件图谱项目

EvolutionaryEventGraph 项目地址:https://github.com/liuhuanyong/SequentialEventExtration Evolutionary Event Graph based on Travel note crawled from XieCheng,基于50W携程出行攻略的顺承事件抽取与事件图谱构建. 项目来源 目前,以谓词性短语…

5步教你成功求职进入BAT

有读者朋友希望我能写一部分关于BAT内部的文章,比如,怎么进入BAT,BAT内部的项目的流程,有挑战性的项目实践,大概是怎么样的? 我希望用这篇文章开启整个进入BAT系列篇,让大家更好的了解BAT内部的…

机器阅读理解任务综述

http://forum.yige.ai/thread/27 2016年 <div class"markdown-body" id"emojify">作者&#xff1a;林鸿宇 韩先培 简介 自然语言处理的长期目标是让计算机能够阅读、处理文本&#xff0c;并且理解文本的内在含义。理解&#xff0c;意味着计算机在接…

论文浅尝 | 基于知识图谱子图匹配以回答自然语言问题

Citation: Hu,S., Zou, L., Yu, J. X., Wang, H., & Zhao, D. (2018). Answering natural language questions by subgraph matching over knowledge graphs. IEEE Transactions on Knowledge & Data Engineering, PP(99), 1-1.动机对于基于知识图谱的事实性问答&#…

新闻文本内容知识图谱表示项目

TextGrapher 项目地址&#xff1a;https://github.com/liuhuanyong/TextGrapher Text Content Grapher based on keyinfo extraction by NLP method。输入一篇文档&#xff0c;将文档进行关键信息提取&#xff0c;进行结构化&#xff0c;并最终组织成图谱组织形式&#xff0c;…

BAT Java面试完整汇总:面试准备(心态+简历)+面试题目+6条面试经验

今天分享的BAT面试完整内容主要包含&#xff1a; 面试前的心态准备&#xff08;3点建议&#xff09; 技术硬实力包含的范围&#xff08;50题目&#xff09; 个人简历突出和优化&#xff08;3点优化步骤&#xff09; 个人软实力的提升&#xff08;6点提升维度&#xff09; B…

算法工程师的效率神器——vim篇

一只小狐狸带你解锁炼丹术&NLP秘籍我相信&#xff0c;有很多小伙伴在看到这篇文章时就有了很多问号&#xff1a;用vim&#xff1f;疯了吧&#xff1f;sublime不香吗&#xff1f;pycharm不香吗&#xff1f;jupyter notebook不香吗&#xff1f;我这可是最新版的windows 100操…

论文浅尝 | 端到端神经视觉问答之上的显式推理

链接&#xff1a;http://www.public.asu.edu/~cbaral/papers/2018-aaai-psl.pdf概述视觉问答(Visual Question Answering)现有两大类主流的问题, 一是基于图片的视觉问答(ImageQuestion Answering), 二是基于视频的视觉问答( Video Question Answering).而后者在实际处理过程中…

机器阅读理解首次超越人类!云从刷新自然语言处理新纪录

媒体动态发展历程资质荣誉人才招聘机器阅读理解首次超越人类&#xff01;云从刷新自然语言处理新纪录 2019-03-11 10:06 浏览&#xff1a;454 近日&#xff0c;云从科技和上海交通大学在自然语言处理领域取得重大突破&#xff0c;在卡内基-梅隆大学发起的大型深层阅读理解任务数…

刚参加完阿里Java P6面试归来,6点面试经验总结!(含必考题答案)

这是来自于优知学院一位铁粉面试回来的总结经验 刚参加完蚂蚁金服的Java P6级的面试&#xff0c;一共参加了4面。面试归来&#xff0c;总结下阿里面试流程、面试过程、以及面试题目范畴。文末有阿里Java P6面试必考题与答案参考~ 阿里面试流程 第一轮&#xff1a;电话技术初面…

如果你不小心打开了这篇文章&#xff0c;请你看完后关掉&#xff0c;不要转发&#xff0c;不要留言&#xff0c;不要问怎么了&#xff0c;不要说你还好吗&#xff0c;也不要给予任何问候。因为我还当&#xff0c;这里是那个三年前&#xff0c;只有陌生听众的地方。今天&#xf…

机器阅读(一)--整体概述

https://plmsmile.github.io/2019/03/30/54-mrc-models/ 主要包含&#xff1a;机器阅读的起因和发展历史&#xff1b;MRC数学形式&#xff1b;MRC与QA的区别&#xff1b;MRC的常见数据集和关键模型 发展动机 传统NLP任务 1) 词性分析 part-of-speech tagging &#xff1a;判断词…

论文浅尝 | 用图网络做小样本学习

链接&#xff1a; https://arxiv.org/abs/1711.04043本文提出了用 GNN(GraphNeural Network) 来解决 Few-Shot Learning 场景的分类问题。在 Few-Shot Learning 中&#xff0c;每个类别的训练样本数据较少&#xff0c;如果直接训练一个多分类模型&#xff0c;会由于每个类别的样…

史上最强Dubbo面试28题答案详解:核心功能+服务治理+架构设计等

1.Dubbo是什么&#xff1f; Dubbo 是一个分布式、高性能、透明化的 RPC 服务框架&#xff0c;提供服务自动注册、自动发现等高效服务治理方案&#xff0c; 可以和 Spring 框架无缝集成。 RPC 指的是远程调用协议&#xff0c;也就是说两个服务器交互数据。 2.Dubbo的由来&…