LeetCode 1046. 最后一块石头的重量(priority_queue 堆)

1. 题目

有一堆石头,每块石头的重量都是正整数。

每一回合,从中选出两块最重的石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头的重量。如果没有石头剩下,就返回 0。

来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/last-stone-weight
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 优先队列(堆)解题

类似题目:LeetCode 1049. 最后一块石头的重量 II(DP)

class Solution {
public:int lastStoneWeight(vector<int>& stones) {priority_queue<int> q(stones.begin(),stones.end());int x, y;while(q.size() > 1){y = q.top();q.pop();x = q.top();q.pop();if(x != y)q.push(y-x);}if(q.size() == 0)return 0;return q.top();}
};

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/478827.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习如何均衡精度、内存、计算和通信开销?

文 | 立交桥跳水冠军知乎本文已获作者授权&#xff0c;禁止二次转载鱼与熊掌不可兼得&#xff0c;深度学习领域中的几个指标也相同。主要的指标有如下四个&#xff1a;&#xff08;1&#xff09;精度&#xff1a;自然精度是一个模型最根本的衡量指标&#xff0c;如果一个模型精…

深度学习在美团搜索广告排序的应用实践

一、前言 在计算广告场景中&#xff0c;需要平衡和优化三个参与方——用户、广告主、平台的关键指标&#xff0c;而预估点击率CTR&#xff08;Click-through Rate&#xff09;和转化率CVR&#xff08;Conversion Rate&#xff09;是其中非常重要的一环&#xff0c;准确地预估CT…

论文浅尝 - ICML2020 | 拆解元学习:理解 Few-Shots 任务中的特征表示

论文笔记整理&#xff1a;申时荣&#xff0c;东南大学博士生。来源&#xff1a;ICML2020链接&#xff1a;http://arxiv.org/abs/2002.06753元学习算法会生成特征提取器&#xff0c;这些特征提取器在进行few-shot分类时就可以达到最新的性能。尽管文献中有大量的元学习方法&…

LeetCode 304. 二维区域和检索 - 矩阵不可变(DP)

1. 题目 2. 解题 类似题目&#xff1a;LeetCode 308. 二维区域和检索 - 可变&#xff08;前缀和&#xff09; dp[i][j]数组表示 从左上角到i,j位置的所有和 sum[i1][j1]sum[i1][j]sum[i][j1]matrix[i][j]−sum[i][j]sum[i1][j1] sum[i1][j]sum[i][j1]matrix[i][j]-sum[i][j]…

论文浅尝 - ICML2020 | 对比图神经网络解释器

论文笔记整理&#xff1a;方尹&#xff0c;浙江大学在读博士&#xff0c;研究方向&#xff1a;图表示学习。Contrastive Graph Neural Network Explanation动机与贡献本文主要关注图神经网络的解释性问题&#xff0c;这样的解释有助于提升GNN的可信度&#xff0c;能够更好的理解…

这可能是最简单又有效的自监督学习方法了

文 | 王珣知乎本文已获作者授权&#xff0c;禁止二次转载从Kaiming的MoCo和Hinton组Chen Ting的SimCLR开始&#xff0c;自监督学习&#xff08;SSL&#xff09;成了计算机视觉的热潮显学。凡是大佬大组&#xff08;Kaiming, VGG&#xff0c;MMLAB等&#xff09;&#xff0c;近两…

大众点评账号业务高可用进阶之路

引言 在任何一家互联网公司&#xff0c;不管其主营业务是什么&#xff0c;都会有一套自己的账号体系。账号既是公司所有业务发展留下的最宝贵资产&#xff0c;它可以用来衡量业务指标&#xff0c;例如日活、月活、留存等&#xff0c;同时也给不同业务线提供了大量潜在用户&…

LeetCode 493. 翻转对(归并排序)

1. 题目 给定一个数组 nums &#xff0c;如果 i < j 且 nums[i] > 2*nums[j] 我们就将 (i, j) 称作一个重要翻转对。 你需要返回给定数组中的重要翻转对的数量。 输入: [1,3,2,3,1] 输出: 2输入: [2,4,3,5,1] 输出: 3来源&#xff1a;力扣&#xff08;LeetCode&#x…

论文浅尝 - ICML2020 | 通过关系图上的贝叶斯元学习进行少样本关系提取

论文笔记整理&#xff1a;申时荣&#xff0c;东南大学博士生。来源&#xff1a;ICML 2020链接&#xff1a;http://arxiv.org/abs/2007.02387一、介绍本文研究了少样本关系提取&#xff0c;旨在通过训练每个关系少量带有标记示例的句子来预测句子中一对实体的关系。为了更有效地…

美团外卖客户端高可用建设体系

背景 美团外卖从2013年11月开始起步&#xff0c;经过数年的高速发展&#xff0c;一直在不断地刷新着记录。2018年5月19日&#xff0c;日订单量峰值突破2000万单&#xff0c;已经成为全球规模最大的外卖平台。业务的快速发展对系统稳定性提出了更高的要求&#xff0c;如何为线上…

我哭了,工业界AI项目落地有多难?

文 | 皮特潘源 | CVer人工智能是近几年最火热的技术名词&#xff0c;如果不谈人工智能相当于落伍&#xff0c;但当真正进入人工智能领域时才发现&#xff0c;一开始以为“拦路虎”是算法&#xff0c;后面发现落地是一个巨大的难题。本文从作者的经历和经验教训展开&#xff0c;…

LeetCode 646. 最长数对链(区间 贪心)

1. 题目 给出 n 个数对。 在每一个数对中&#xff0c;第一个数字总是比第二个数字小。 现在&#xff0c;我们定义一种跟随关系&#xff0c;当且仅当 b < c 时&#xff0c;数对(c, d) 才可以跟在 (a, b) 后面。我们用这种形式来构造一个数对链。 给定一个对数集合&#xf…

以太网和路由设置,内网和外网同时上

第一步&#xff0c;查看自己内网的地址&#xff0c;网络与internet设置&#xff0c;更改适配器选项&#xff0c;出现下面的页面 点击内网&#xff0c;右击WLan&#xff0c;点击状态 点击详细信息&#xff1a; 记录网关信息&#xff1a; 第二步&#xff1a;查找路由器设置 …

论文浅尝 - AAAI2020 | 通过知识库问答改善知识感知对话生成

论文笔记整理&#xff1a;胡楠&#xff0c;东南大学博士。来源&#xff1a;AAAI 2020动机现在的将外部知识整合到对话系统中的研究仍然存在一定缺陷。首先&#xff0c;先前的方法难以处理某些语句的主语和关系&#xff0c;比如当语句中的相关实体彼此相距较远时。其次&#xff…

互联网企业数据安全体系建设

一、背景 Facebook数据泄露事件一度成为互联网行业的焦点&#xff0c;几百亿美元市值瞬间蒸发&#xff0c;这个代价足以在地球上养活一支绝对庞大的安全团队&#xff0c;甚至可以直接收购几家规模比较大的安全公司了。 虽然媒体上发表了很多谴责的言论&#xff0c;但实事求是地…

NLP研究者必备的语言学书籍!

文 | Serena Gao知乎首先&#xff0c;做nlp不一定要很懂语言学&#xff0c;也不一定要跟语言学扯上关系。nlp可以仅是data mining&#xff0c;features engineering, 也的确有很多work目前在用文本或者对话做为数据集&#xff0c;然后用统计学方法实现目的&#xff0c;比如deep…

LeetCode 334. 递增的三元子序列

1. 题目 给定一个未排序的数组&#xff0c;判断这个数组中是否存在长度为 3 的递增子序列。 数学表达式如下: 如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n-1&#xff0c; 使得 arr[i] < arr[j] < arr[k] &#xff0c;返回 true ; 否则返回 false 。 说…

论文小综 | Neuro-Symbolic Reasoning in NLP

本文作者&#xff1a;邓淑敏&#xff0c;浙江大学在读博士&#xff0c;研究方向为低资源条件下知识图谱自动化构建关键技术研究。深度学习的高速发展使得模型的表达能力逐步完善&#xff0c;在一些感知任务&#xff08;例如动作识别和事件检测&#xff09;上取得了显著成果。但…

实时数据产品实践——美团大交通战场沙盘

背景 大数据时代&#xff0c;数据的重要性不言而喻&#xff0c;尤其对于互联网公司&#xff0c;随着业务的快速变化&#xff0c;商业模式的不断创新、用户体验个性化、实时化需求日益突出&#xff0c;海量数据实时处理在商业方面的需求越来越大。如何通过数据快速分析出用户的行…

谁才是Transformer家族中的最强王者?谷歌告诉你答案

文 | Sherry自从17年Attention is all you need发出&#xff0c;继而18年BERT刷新各大榜单&#xff0c;大型预训练Transformer似乎已经成为自然语言处理的标准基准模型&#xff0c;甚至进一步渗透到图像领域。各路大神基于Transformer提出了海量改进方法。这些改变是否对大多数…