文 | 花花@机器学习算法与自然语言处理
单位 | SenseTime 算法研究员
目录
0X01 分布式并行训练概述
0X02 Pytorch分布式数据并行
0X03 手把手渐进式实战
A. 单机单卡
B. 单机多卡DP
C. 多机多卡DDP
D. Launch / Slurm 调度方式
0X04 完整框架 Distribuuuu
0X05 Reference
文中所有教学代码和日志见:
https://link.zhihu.com/?target=https%3A//github.com/BIGBALLON/distribuuuu/tree/master/tutorial
文中提到的框架见:
https://link.zhihu.com/?target=https%3A//github.com/BIGBALLON/distribuuuu
0X01 分布式并行训练概述
最常被提起,容易实现且使用最广泛的,莫过于数据并行(Data Parallelism) 技术,其核心思想是将大batch划分为若干小barch分发到不同device并行计算,解决单GPU显存不足的限制。以此同时,当单GPU无法放下整个模型时,我们还需考虑模型并行 (Model / Pipeline Parallelism)。如考虑将模型进行纵向切割,不同的Layers放在不同的device上。或是横向切割,通过矩阵运算进行加速。当然,还有一些非并行的技术或者技巧,用于解决训练效率或者训练显存不足等问题,这里草率地将当前深度学习的大规模分布式训练技术分为如下三类:
Data Parallelism (数据并行)
Naive:每个worker存储一份model和optimizer,每轮迭代时,将样本分为若干份分发给各个worker,实现并行计算
ZeRO: Zero Redundancy Optimizer,微软提出的数据并行内存优化技术,核心思想是保持Naive数据并行通信效率的同时,尽可能降低内存占用
Model/Pipeline Parallelism (模型/管道并行)
Naive: 纵向切割模型,将不同的layers放到不同的device上,按顺序进行正/反向传播
GPipe:小批量流水线方式的纵向切割模型并行
Megatron-LM:Tensor-slicing方式的模型并行加速
Non-parallelism approach (非并行技术)
Gradient Accumulation: 通过梯度累加的方式解决显存不足的问题,常用于模型较大,单卡只能塞下很小的batch的并行训练中
CPU Offload: 同时利用 CPU 和 GPU 内存来训练大型模型,即存在GPU-CPU-GPU的 transfers 操作
etc.:还有很多不一一罗列(如Checkpointing,Memory Efficient Optimizer等)
不过这里我强推一下DeepSpeed,微软在2020年开源的一个基于PyTorch分布式训练 library,让训练百亿参数的巨大模型成为可能,其提供的 3D-parallelism (DP+PP+MP)的并行技术组合,能极大程度降低大模型训练的硬件条件以及提高训练的效率
PS:本文的重点是介绍PyTorch原生的分布式数据平行及其用法,其他的内容,我们后面的文章再细聊。(如果有机会的话qwq)
0X02 Pytorch分布式数据并行
将时间拨回2017年,我第一次接触深度学习,早期的TensorFlow使用的是PS(Parameter Server)架构,在结点数量线性增长的情况下,带宽瓶颈格外明显。而随后百度将Ring-Allreduce技术运用到深度学习分布式训练,PyTorch1.0之后香起来的原因也是因为在分布式训练方面做了较大改动,适配多种通信后端,使用RingAllReduce架构。首先,确保你对PyTorch有一定的熟悉程度,在次前提下,对如下内容进行学习和了解:
DataParallel 和 DistributedDataParallel 的原理和使用
进程组 和 torch.distributed.init_process_group 的原理和使用
集体通信(Collective Communication) 的原理和使用
基本上就能够handle住大部分的数据并行任务了
关于理论的东西,我写了一大堆,最后又全删掉了。原因是我发现已经有足够多的文章介绍PS/Ring-AllReduce和 PyTorch DP/DDP 的原理,给出几篇我认为足够好的文章:
PYTORCH DISTRIBUTED OVERVIEW
PyTorch 源码解读之 DP & DDP
Bringing HPC Techniques to Deep Learning
0X03 手把手渐进式实战
那么接下来我们以Step by Step的方式进行实践,你可以直接通过下面的快速索引进行跳转:
单机单卡 [snsc.py]
单机多卡 (with DataParallel) [snmc_dp.py]
多机多卡 (with DistributedDataParallel)
torch.distributed.launch [mnmc_ddp_launch.py]
torch.multiprocessing [mnmc_ddp_mp.py]
Slurm Workload Manager [mnmc_ddp_slurm.py]
ImageNet training example [imagenet.py]
A. 单机单卡
Single Node Single GPU Card Training, 源码见 snsc.py,后续我们会在此代码上进行修改。简单看一下,单机单卡要做的就是定义网络,定义dataloader,定义loss和optimizer,开训,很简单的几个步骤。
"""(SNSC) Single Node Single GPU Card Training"""
import torch
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transformsBATCH_SIZE = 256
EPOCHS = 5if __name__ == "__main__":# 1. define networkdevice = "cuda"net = torchvision.models.resnet18(num_classes=10)net = net.to(device=device)# 2. define dataloadertrainset = torchvision.datasets.CIFAR10(root="./data",train=True,download=True,transform=transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),]),)train_loader = torch.utils.data.DataLoader(trainset,batch_size=BATCH_SIZE,shuffle=True,num_workers=4,pin_memory=True,)# 3. define loss and optimizercriterion = nn.CrossEntropyLoss()optimizer = torch.optim.SGD(net.parameters(),lr=0.01,momentum=0.9,weight_decay=0.0001,nesterov=True,)print(" ======= Training ======= \n")# 4. start to trainnet.train()for ep in range(1, EPOCHS + 1):train_loss = correct = total = 0for idx, (inputs, targets) in enumerate(train_loader):inputs, targets = inputs.to(device), targets.to(device)outputs = net(inputs)loss = criterion(outputs, targets)optimizer.zero_grad()loss.backward()optimizer.step()train_loss += loss.item()total += targets.size(0)correct += torch.eq(outputs.argmax(dim=1), targets).sum().item()if (idx + 1) % 50 == 0 or (idx + 1) == len(train_loader):print(" == step: [{:3}/{}] [{}/{}] | loss: {:.3f} | acc: {:6.3f}%".format(idx + 1,len(train_loader),ep,EPOCHS,train_loss / (idx + 1),100.0 * correct / total,))print("\n ======= Training Finished ======= \n")"""
usage:
>>> python snsc.py
Files already downloaded and verified======= Training ======= == step: [ 50/196] [1/5] | loss: 1.959 | acc: 28.633%== step: [100/196] [1/5] | loss: 1.806 | acc: 33.996%== step: [150/196] [1/5] | loss: 1.718 | acc: 36.987%== step: [196/196] [1/5] | loss: 1.658 | acc: 39.198%== step: [ 50/196] [2/5] | loss: 1.393 | acc: 49.578%== step: [100/196] [2/5] | loss: 1.359 | acc: 50.473%== step: [150/196] [2/5] | loss: 1.336 | acc: 51.372%== step: [196/196] [2/5] | loss: 1.317 | acc: 52.200%== step: [ 50/196] [3/5] | loss: 1.205 | acc: 56.102%== step: [100/196] [3/5] | loss: 1.185 | acc: 57.254%== step: [150/196] [3/5] | loss: 1.175 | acc: 57.755%== step: [196/196] [3/5] | loss: 1.165 | acc: 58.072%== step: [ 50/196] [4/5] | loss: 1.067 | acc: 60.914%== step: [100/196] [4/5] | loss: 1.061 | acc: 61.406%== step: [150/196] [4/5] | loss: 1.058 | acc: 61.643%== step: [196/196] [4/5] | loss: 1.054 | acc: 62.022%== step: [ 50/196] [5/5] | loss: 0.988 | acc: 64.852%== step: [100/196] [5/5] | loss: 0.983 | acc: 64.801%== step: [150/196] [5/5] | loss: 0.980 | acc: 65.052%== step: [196/196] [5/5] | loss: 0.977 | acc: 65.076%======= Training Finished =======
"""
B. 单机多卡DP
Single Node Multi-GPU Crads Training (with DataParallel) snmc_dp.py, 和 snsc.py 对比一下,DP只需要花费最小的代价,既可以使用多卡进行训练(其实就一行???),但是因为GIL锁的限制,DP的性能是低于DDP的。
"""
(SNMC) Single Node Multi-GPU Crads Training (with DataParallel)
Try to compare with smsc.py and find out the differences.
"""
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transformsBATCH_SIZE = 256
EPOCHS = 5if __name__ == "__main__":# 1. define networkdevice = "cuda"net = torchvision.models.resnet18(pretrained=False, num_classes=10)net = net.to(device=device)# Use single-machine multi-GPU DataParallel,# you would like to speed up training with the minimum code change.net = nn.DataParallel(net)# 2. define dataloadertrainset = torchvision.datasets.CIFAR10(root="./data",train=True,download=True,transform=transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),]),)train_loader = torch.utils.data.DataLoader(trainset,batch_size=BATCH_SIZE,shuffle=True,num_workers=4,pin_memory=True,)# 3. define loss and optimizercriterion = nn.CrossEntropyLoss()optimizer = torch.optim.SGD(net.parameters(),lr=0.01,momentum=0.9,weight_decay=0.0001,nesterov=True,)print(" ======= Training ======= \n")# 4. start to trainnet.train()for ep in range(1, EPOCHS + 1):train_loss = correct = total = 0for idx, (inputs, targets) in enumerate(train_loader):inputs, targets = inputs.to(device), targets.to(device)outputs = net(inputs)loss = criterion(outputs, targets)optimizer.zero_grad()loss.backward()optimizer.step()train_loss += loss.item()total += targets.size(0)correct += torch.eq(outputs.argmax(dim=1), targets).sum().item()if (idx + 1) % 50 == 0 or (idx + 1) == len(train_loader):print(" == step: [{:3}/{}] [{}/{}] | loss: {:.3f} | acc: {:6.3f}%".format(idx + 1,len(train_loader),ep,EPOCHS,train_loss / (idx + 1),100.0 * correct / total,))print("\n ======= Training Finished ======= \n")"""
usage: 2GPUs for training
>>> CUDA_VISIBLE_DEVICES=0,1 python snmc_dp.py
Files already downloaded and verified======= Training ======= == step: [ 50/196] [1/5] | loss: 1.992 | acc: 26.633%== step: [100/196] [1/5] | loss: 1.834 | acc: 32.797%== step: [150/196] [1/5] | loss: 1.742 | acc: 36.201%== step: [196/196] [1/5] | loss: 1.680 | acc: 38.578%== step: [ 50/196] [2/5] | loss: 1.398 | acc: 49.062%== step: [100/196] [2/5] | loss: 1.380 | acc: 49.953%== step: [150/196] [2/5] | loss: 1.355 | acc: 50.810%== step: [196/196] [2/5] | loss: 1.338 | acc: 51.428%== step: [ 50/196] [3/5] | loss: 1.242 | acc: 55.727%== step: [100/196] [3/5] | loss: 1.219 | acc: 56.801%== step: [150/196] [3/5] | loss: 1.200 | acc: 57.195%== step: [196/196] [3/5] | loss: 1.193 | acc: 57.328%== step: [ 50/196] [4/5] | loss: 1.105 | acc: 61.102%== step: [100/196] [4/5] | loss: 1.098 | acc: 61.082%== step: [150/196] [4/5] | loss: 1.087 | acc: 61.354%== step: [196/196] [4/5] | loss: 1.086 | acc: 61.426%== step: [ 50/196] [5/5] | loss: 1.002 | acc: 64.039%== step: [100/196] [5/5] | loss: 1.006 | acc: 63.977%== step: [150/196] [5/5] | loss: 1.009 | acc: 63.935%== step: [196/196] [5/5] | loss: 1.005 | acc: 64.024%======= Training Finished =======
"""
C. 多机多卡DDP
Okay, 下面进入正题,来看一下多机多卡怎么做,虽然上面给出的文章都讲得很明白,但有些概念还是有必要提一下:
进程组的概念
group:进程组,大部分情况下DDP的各个进程是在同一个进程组下
world size:总的进程数量(原则上一个process占用一个GPU是较优的)
rank:当前进程的序号,用于进程间通讯,rank = 0 的主机为 master 节点
local_rank:当前进程对应的GPU号
举个栗子 :4台机器(每台机器8张卡)进行分布式训练, 通过 init_process_group() 对进程组进行初始化, 初始化后 可以通过 get_world_size() 获取到 world size,在该例中为32, 即有32个进程,其编号为0-31, 通过 get_rank() 函数可以进行获取 在每台机器上,local rank均为0-8,这是 local rank 与 rank 的区别, local rank 会对应到实际的GPU ID上 (单机多任务的情况下注意CUDA_VISIBLE_DEVICES的使用,控制不同程序可见的GPU device)。
DDP基本用法
使用 torch.distributed.init_process_group 初始化进程组
使用 torch.nn.parallel.DistributedDataParallel 创建分布式并行模型
创建对应的 DistributedSampler
使用 torch.distributed.launch / torch.multiprocessing 或 slurm 开始训练
集体通信的使用
将各卡数据进行汇总,分发,平均等操作,需要使用集体通讯操作,比如算accuracy或者总loss时候需要用到allreduce, 参考
torch.distribute
NCCL-Woolley
scaled_all_reduce
不同启动方式的用法
torch.distributed.launch:mnmc_ddp_launch.py
torch.multiprocessing:mnmc_ddp_mp.py
Slurm Workload Manager:mnmc_ddp_slurm.py
"""
(MNMC) Multiple Nodes Multi-GPU Cards Trainingwith DistributedDataParallel and torch.distributed.launch
Try to compare with [snsc.py, snmc_dp.py & mnmc_ddp_mp.py] and find out the differences.
"""import osimport torch
import torch.distributed as dist
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torch.nn.parallel import DistributedDataParallel as DDPBATCH_SIZE = 256
EPOCHS = 5if __name__ == "__main__":# 0. set up distributed devicerank = int(os.environ["RANK"])local_rank = int(os.environ["LOCAL_RANK"])torch.cuda.set_device(rank % torch.cuda.device_count())dist.init_process_group(backend="nccl")device = torch.device("cuda", local_rank)print(f"[init] == local rank: {local_rank}, global rank: {rank} ==")# 1. define networknet = torchvision.models.resnet18(pretrained=False, num_classes=10)net = net.to(device)# DistributedDataParallelnet = DDP(net, device_ids=[local_rank], output_device=local_rank)# 2. define dataloadertrainset = torchvision.datasets.CIFAR10(root="./data",train=True,download=False,transform=transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),]),)# DistributedSampler# we test single Machine with 2 GPUs# so the [batch size] for each process is 256 / 2 = 128train_sampler = torch.utils.data.distributed.DistributedSampler(trainset,shuffle=True,)train_loader = torch.utils.data.DataLoader(trainset,batch_size=BATCH_SIZE,num_workers=4,pin_memory=True,sampler=train_sampler,)# 3. define loss and optimizercriterion = nn.CrossEntropyLoss()optimizer = torch.optim.SGD(net.parameters(),lr=0.01 * 2,momentum=0.9,weight_decay=0.0001,nesterov=True,)if rank == 0:print(" ======= Training ======= \n")# 4. start to trainnet.train()for ep in range(1, EPOCHS + 1):train_loss = correct = total = 0# set samplertrain_loader.sampler.set_epoch(ep)for idx, (inputs, targets) in enumerate(train_loader):inputs, targets = inputs.to(device), targets.to(device)outputs = net(inputs)loss = criterion(outputs, targets)optimizer.zero_grad()loss.backward()optimizer.step()train_loss += loss.item()total += targets.size(0)correct += torch.eq(outputs.argmax(dim=1), targets).sum().item()if rank == 0 and ((idx + 1) % 25 == 0 or (idx + 1) == len(train_loader)):print(" == step: [{:3}/{}] [{}/{}] | loss: {:.3f} | acc: {:6.3f}%".format(idx + 1,len(train_loader),ep,EPOCHS,train_loss / (idx + 1),100.0 * correct / total,))if rank == 0:print("\n ======= Training Finished ======= \n")"""
usage:
>>> python -m torch.distributed.launch --help
exmaple: 1 node, 4 GPUs per node (4GPUs)
>>> python -m torch.distributed.launch \--nproc_per_node=4 \--nnodes=1 \--node_rank=0 \--master_addr=localhost \--master_port=22222 \mnmc_ddp_launch.py
[init] == local rank: 3, global rank: 3 ==
[init] == local rank: 1, global rank: 1 ==
[init] == local rank: 0, global rank: 0 ==
[init] == local rank: 2, global rank: 2 ========= Training ======= == step: [ 25/49] [0/5] | loss: 1.980 | acc: 27.953%== step: [ 49/49] [0/5] | loss: 1.806 | acc: 33.816%== step: [ 25/49] [1/5] | loss: 1.464 | acc: 47.391%== step: [ 49/49] [1/5] | loss: 1.420 | acc: 48.448%== step: [ 25/49] [2/5] | loss: 1.300 | acc: 52.469%== step: [ 49/49] [2/5] | loss: 1.274 | acc: 53.648%== step: [ 25/49] [3/5] | loss: 1.201 | acc: 56.547%== step: [ 49/49] [3/5] | loss: 1.185 | acc: 57.360%== step: [ 25/49] [4/5] | loss: 1.129 | acc: 59.531%== step: [ 49/49] [4/5] | loss: 1.117 | acc: 59.800%======= Training Finished =======
exmaple: 1 node, 2tasks, 4 GPUs per task (8GPUs)
>>> CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \--nproc_per_node=4 \--nnodes=2 \--node_rank=0 \--master_addr="10.198.189.10" \--master_port=22222 \mnmc_ddp_launch.py
>>> CUDA_VISIBLE_DEVICES=4,5,6,7 python -m torch.distributed.launch \--nproc_per_node=4 \--nnodes=2 \--node_rank=1 \--master_addr="10.198.189.10" \--master_port=22222 \mnmc_ddp_launch.py======= Training ======= == step: [ 25/25] [0/5] | loss: 1.932 | acc: 29.088%== step: [ 25/25] [1/5] | loss: 1.546 | acc: 43.088%== step: [ 25/25] [2/5] | loss: 1.424 | acc: 48.032%== step: [ 25/25] [3/5] | loss: 1.335 | acc: 51.440%== step: [ 25/25] [4/5] | loss: 1.243 | acc: 54.672%======= Training Finished =======
exmaple: 2 node, 8 GPUs per node (16GPUs)
>>> python -m torch.distributed.launch \--nproc_per_node=8 \--nnodes=2 \--node_rank=0 \--master_addr="10.198.189.10" \--master_port=22222 \mnmc_ddp_launch.py
>>> python -m torch.distributed.launch \--nproc_per_node=8 \--nnodes=2 \--node_rank=1 \--master_addr="10.198.189.10" \--master_port=22222 \mnmc_ddp_launch.py
[init] == local rank: 5, global rank: 5 ==
[init] == local rank: 3, global rank: 3 ==
[init] == local rank: 2, global rank: 2 ==
[init] == local rank: 4, global rank: 4 ==
[init] == local rank: 0, global rank: 0 ==
[init] == local rank: 6, global rank: 6 ==
[init] == local rank: 7, global rank: 7 ==
[init] == local rank: 1, global rank: 1 ========= Training ======= == step: [ 13/13] [0/5] | loss: 2.056 | acc: 23.776%== step: [ 13/13] [1/5] | loss: 1.688 | acc: 36.736%== step: [ 13/13] [2/5] | loss: 1.508 | acc: 44.544%== step: [ 13/13] [3/5] | loss: 1.462 | acc: 45.472%== step: [ 13/13] [4/5] | loss: 1.357 | acc: 49.344%======= Training Finished =======
"""
D. Launch / Slurm 调度方式
这里单独用代码 imagenet.py 讲一下不同的启动方式。我们来看一下这个 setup_distributed
函数:
通过 srun 产生的程序在环境变量中会有 SLURM_JOB_ID, 以判断是否为slurm的调度方式
rank通过 SLURM_PROCID 可以拿到
world size实际上就是进程数, 通过 SLURM_NTASKS 可以拿到
IP地址通过
subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")
巧妙得到,栗子来源于 MMCV否则,就使用launch进行调度,直接通过 os.environ["RANK"] 和 os.environ["WORLD_SIZE"] 即可拿到 rank 和 world size
# 此函数可以直接移植到你的程序中,动态获取IP,使用很方便
# 默认支持launch 和 srun 两种方式
def setup_distributed(backend="nccl", port=None):"""Initialize distributed training environment.support both slurm and torch.distributed.launchsee torch.distributed.init_process_group() for more details"""num_gpus = torch.cuda.device_count()if "SLURM_JOB_ID" in os.environ:rank = int(os.environ["SLURM_PROCID"])world_size = int(os.environ["SLURM_NTASKS"])node_list = os.environ["SLURM_NODELIST"]addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")# specify master portif port is not None:os.environ["MASTER_PORT"] = str(port)elif "MASTER_PORT" not in os.environ:os.environ["MASTER_PORT"] = "29500"if "MASTER_ADDR" not in os.environ:os.environ["MASTER_ADDR"] = addros.environ["WORLD_SIZE"] = str(world_size)os.environ["LOCAL_RANK"] = str(rank % num_gpus)os.environ["RANK"] = str(rank)else:rank = int(os.environ["RANK"])world_size = int(os.environ["WORLD_SIZE"])torch.cuda.set_device(rank % num_gpus)dist.init_process_group(backend=backend,world_size=world_size,rank=rank,)
那提交任务就变成很自然的事情:
# ======== slurm 调度方式 ========
# 32张GPU,4个node,每个node8张卡,8192的batch size,32个进程
# see:https://github.com/BIGBALLON/distribuuuu/blob/master/tutorial/imagenet.py
slurm example: 32GPUs (batch size: 8192)128k / (256*32) -> 157 itertaion
>>> srun --partition=openai -n32 --gres=gpu:8 --ntasks-per-node=8 --job-name=slrum_test \python -u imagenet.py
[init] == local rank: 7, global rank: 7 ==
[init] == local rank: 1, global rank: 1 ==
[init] == local rank: 4, global rank: 4 ==
[init] == local rank: 2, global rank: 2 ==
[init] == local rank: 6, global rank: 6 ==
[init] == local rank: 3, global rank: 3 ==
[init] == local rank: 5, global rank: 5 ==
[init] == local rank: 4, global rank: 12 ==
[init] == local rank: 1, global rank: 25 ==
[init] == local rank: 5, global rank: 13 ==
[init] == local rank: 6, global rank: 14 ==
[init] == local rank: 0, global rank: 8 ==
[init] == local rank: 1, global rank: 9 ==
[init] == local rank: 2, global rank: 10 ==
[init] == local rank: 3, global rank: 11 ==
[init] == local rank: 7, global rank: 15 ==
[init] == local rank: 5, global rank: 29 ==
[init] == local rank: 2, global rank: 26 ==
[init] == local rank: 3, global rank: 27 ==
[init] == local rank: 0, global rank: 24 ==
[init] == local rank: 7, global rank: 31 ==
[init] == local rank: 6, global rank: 30 ==
[init] == local rank: 4, global rank: 28 ==
[init] == local rank: 0, global rank: 16 ==
[init] == local rank: 5, global rank: 21 ==
[init] == local rank: 7, global rank: 23 ==
[init] == local rank: 1, global rank: 17 ==
[init] == local rank: 6, global rank: 22 ==
[init] == local rank: 3, global rank: 19 ==
[init] == local rank: 2, global rank: 18 ==
[init] == local rank: 4, global rank: 20 ==
[init] == local rank: 0, global rank: 0 ========= Training ======= == step: [ 40/157] [0/1] | loss: 6.781 | acc: 0.703%== step: [ 80/157] [0/1] | loss: 6.536 | acc: 1.260%== step: [120/157] [0/1] | loss: 6.353 | acc: 1.875%== step: [157/157] [0/1] | loss: 6.207 | acc: 2.465%# ======== launch 调度方式 ========
# nproc_per_node: 每个node的卡数
# nnodes: node数量
# node_rank:node编号,从0开始
# see: https://github.com/BIGBALLON/distribuuuu/blob/master/tutorial/mnmc_ddp_launch.py
distributed.launch example: 8GPUs (batch size: 2048)128k / (256*8) -> 626 itertaion
>>> python -m torch.distributed.launch \--nproc_per_node=8 \--nnodes=1 \--node_rank=0 \--master_addr=localhost \--master_port=22222 \imagenet.py
[init] == local rank: 0, global rank: 0 ==
[init] == local rank: 2, global rank: 2 ==
[init] == local rank: 6, global rank: 6 ==
[init] == local rank: 5, global rank: 5 ==
[init] == local rank: 7, global rank: 7 ==
[init] == local rank: 4, global rank: 4 ==
[init] == local rank: 3, global rank: 3 ==
[init] == local rank: 1, global rank: 1 ========= Training ======= == step: [ 40/626] [0/1] | loss: 6.821 | acc: 0.498%== step: [ 80/626] [0/1] | loss: 6.616 | acc: 0.869%== step: [120/626] [0/1] | loss: 6.448 | acc: 1.351%== step: [160/626] [0/1] | loss: 6.294 | acc: 1.868%== step: [200/626] [0/1] | loss: 6.167 | acc: 2.443%== step: [240/626] [0/1] | loss: 6.051 | acc: 3.003%== step: [280/626] [0/1] | loss: 5.952 | acc: 3.457%== step: [320/626] [0/1] | loss: 5.860 | acc: 3.983%== step: [360/626] [0/1] | loss: 5.778 | acc: 4.492%== step: [400/626] [0/1] | loss: 5.700 | acc: 4.960%== step: [440/626] [0/1] | loss: 5.627 | acc: 5.488%== step: [480/626] [0/1] | loss: 5.559 | acc: 6.013%== step: [520/626] [0/1] | loss: 5.495 | acc: 6.520%== step: [560/626] [0/1] | loss: 5.429 | acc: 7.117%== step: [600/626] [0/1] | loss: 5.371 | acc: 7.580%== step: [626/626] [0/1] | loss: 5.332 | acc: 7.907%
0X04 完整框架 Distribuuuu
Distribuuuu 是我闲(没)来(事)无(找)事(事)写的一个完整的纯DDP分类训练框架,足够精简且足够有效率。支持launch和srun两种启动方式,可以作为新手学习和魔改的样板工程。
# 1 node, 8 GPUs
python -m torch.distributed.launch \--nproc_per_node=8 \--nnodes=1 \--node_rank=0 \--master_addr=localhost \--master_port=29500 \train_net.py --cfg config/resnet18.yaml
# see srun --help
# and https://slurm.schedmd.com/ for details# example: 64 GPUs
# batch size = 64 * 128 = 8192
# itertaion = 128k / 8192 = 156
# lr = 64 * 0.1 = 6.4srun --partition=openai-a100 \-n 64 \--gres=gpu:8 \--ntasks-per-node=8 \--job-name=Distribuuuu \python -u train_net.py --cfg config/resnet18.yaml \TRAIN.BATCH_SIZE 128 \OUT_DIR ./resnet18_8192bs \OPTIM.BASE_LR 6.4
下面是用 Distribuuuu 做的一些简单的实验,botnet50 是复现了今年比较火的 Transformer+CNN 的文章 Bottleneck Transformers for Visual 的精度,主要是证明这个框架的可用性, resnet18最后小测了 64卡/16384BS 的训练, 精度尚可。另外稍微强调一下SyncBN不要随便乱用,如果单卡Batch已经足够大的情况下不需要开SyncBN。
如果是出于学习目的,想进行一些魔改和测试,可以试试我的Distribuuuu,因为足够简单很容易改吖 ,如果你想做research的话推荐用FAIR的 pycls, 有model zoo 而且代码足够优雅。另外,打比赛的话就不建议自己造轮子了,分类可直接魔改 pycls 或 MMClassification, 检测就魔改 MMDetection 和 Detectron2 就完事啦
0X05 Reference
PYTORCH DISTRIBUTED OVERVIEW
PyTorch 源码解读之 DP & DDP
Bringing HPC Techniques to Deep Learning
Parameter Servers
Ring-Allreduce:Launching and configuring distributed data parallel applications
PyTorch Distributed Training
Kill PyTorch Distributed Training Processes
NCCL: ACCELERATED MULTI-GPUCOLLECTIVE COMMUNICATIONS
WRITING DISTRIBUTED APPLICATIONS WITH PYTORCH
PyTorch Distributed: Experiences on Accelerating Data Parallel Training
Pytorch多机多卡分布式训练
那今天就到这里吧,如果你有问题,用任何方式联系我都阔以,我康到就会解答啦(如果我会的话啦) ✌️ ,另外如果大家感兴趣的话,康康要不要出第二篇(如果有时间的话啦) ✍️
后台回复关键词【入群】
加入卖萌屋NLP/IR/Rec与求职讨论群
后台回复关键词【顶会】
获取ACL、CIKM等各大顶会论文集!