会议交流 | 大规模知识图谱的构建及应用分享

本文转载自公众号:DataFunTalk。


      

论坛出品:张伟 阿里巴巴 资深算法专家

分享时间:12月19日,9:00-12:00

导读:12月19日,9:00-12:00。在DataFunTalk年终大会上,由阿里巴巴资深算法专家张伟老师出品的知识图谱论坛,将邀请来自百度、阿里、美团、贝壳找房的4位嘉宾,为大家分享大规模知识图谱的构建及在各自场景下的最新应用实践,感兴趣的小伙伴,欢迎识别海报二维码报名!

01

论坛海报

02

详细介绍

出品人:

张伟

阿里巴巴 | 资深算法专家

分享嘉宾:

王泉 博士

百度 | 资深研发工程师

演讲者简介:资深研发工程师,负责百度知识图谱前瞻技术研究。2018年加入百度,先后在自然语言处理和知识图谱部从事技术研发工作。其长期研究方向包括知识的自动获取、表示和推理等关键技术及其在自然语言理解与生成中的应用。迄今在SIGIR、WSDM、ACL、EMNLP、NAACL、IJCAI、AAAI、IEEE TKDE、ACM TOIS等权威会议期刊上发表近30篇重要学术论文,Google Scholar引用1600余次。曾获CCKS 2020医疗事件抽取、MRQA 2019问答阅读理解、WSDM Cup 2017事实校验、CCKS 2016链接预测等多项国内外技术评测冠军。

演讲议题:百度知识图谱技术及应用

演讲议题介绍:知识图谱是让机器像人类一样理解客观世界的基石。本次报告首先简要介绍知识图谱在百度的位置及整体的发展概况。接下来从通用知识图谱和行业知识图谱两个分支重点介绍百度知识图谱技术及应用的最新进展,另外会介绍两个特殊的知识图谱——事件图谱和视频理解图谱。最后介绍百度知识图谱在技术和数据开放方面的工作。

听众收益:了解百度知识图谱技术全貌及其在百度产品中的应用

新技术/实用技术点:图谱构建、图谱表示、图谱应用、事件图谱、视频理解图谱、行业图谱

唐呈光

阿里巴巴 | 算法专家

演讲者简介:阿里巴巴算法专家,2017年初加入阿里巴巴,云小蜜KBQA方向算法负责人,主要负责知识图谱构建、知识图谱问答以及图谱动态自适应能力的算法研发,致力于解决智能服务领域人机对话在冷启动、复杂语义理解和上线运营遇到的技术难题,并落地到ToB真实业务场景中。

演讲议题:云小蜜知识图谱低成本构建及问答技术

演讲议题介绍:云小蜜已应用于电信运营商、数字政府、金融等领域,为政府、企业和组织提供了一套完整的智能客服解决方案。小蜜通过构建行业知识图谱,提升语义理解、推理计算和高效复用的业务效果,推动智能客服产品升级,从而带来更好的用户体验。在实际业务中,行业图谱的构建已经成为制约图谱大规模应用的关键痛点,为了解决该问题,云小蜜提出了一套低成本图谱构建方案,提升了项目的交付效率;在应用方面,不断扩展KBQA能力边界,提升知识图谱整体的技术竞争力及业务价值。

听众收益:

1. 低成本知识图谱构建;

2. KBQA核心算法;

3. 工业界图谱落地最佳实践;

曹雪智 博士

美团 | 技术专家

演讲者简介:曹雪智博士于2018年7月加入美团点评,担任AI平台NLP中心的研究员。目前主要负责美团大脑中商品知识图谱的构建与应用,实现对商品相关内容的更加立体化、智能化、常识化的理解,赋能美团点评的外卖、商超、生鲜等多个业务线。在此之前,曹雪智博士毕业于上海交通大学,在个性化推荐系统、在线社交网络等方向上开展研究工作,并在相关领域的顶级会议和期刊上以第一作者发表10余篇论文,如WWW, SIGIR, AAAI, CIKM, RecSys等。除此之外,曹雪智博士也曾多次在ACM-ICPC竞赛中取得金牌,并在数据挖掘竞赛KDD Cup中夺得冠军。

演讲议题:美团大脑 - 新零售商品知识图谱的构建及应用

演讲议题介绍:在互联网新零售的大背景下,商品知识图谱作为零售行业数字化的基石,提供了对于商品相关内容的立体化、智能化、常识化的理解,对上层业务的落地起到了至关重要的作用。相比于传统知识图谱而言,在新零售背景下的商品知识图谱需要应对更加分散、复杂的数据和业务场景,而这些不同的业务对于底层知识图谱都提出了各自不同的需求和挑战。美团点评作为互联网行业中新零售的典型代表,覆盖了包括外卖、商超、生鲜、药品等在内的多个新零售领域,在相关的知识图谱方面进行了探索。在这次分享中,将会由美团大脑中商品知识图谱的负责人曹雪智博士来对美团新零售背景下商品知识图谱的构建和应用进行介绍。

听众收益:本次分享会介绍美团在商品知识图谱的构建和应用方面的工作,正在或希望从事知识图谱领域的听众可以从分享中了解真实的案例和相关的技术。

新技术/实用技术点:利用自然语言等算法来提高知识图谱的构建人效;知识图谱在互联网新零售中的各个应用场景。

孙拔群 

贝壳找房 | 高级技术经理

演讲者简介: 毕业于哈尔滨工业大学,曾就职于腾讯、搜狗、微博等大型互联网公司以及创业公司,2018年加入贝壳主持建设贝壳房产知识体系,通过数据引入、知识加工,建立了有贝壳特色的行业知识图谱。同时,通过知识对业务赋能,支撑贝壳知识型业务,作为公司主打智能化产品—小贝助手智能培训方向负责人,专注于提升经纪人专业技能,打造培训评价平台。

演讲议题:基于事理图谱的智能培训

演讲议题介绍:如房产、汽车、保险、客服等强调人与人交互,重视话术、知识等作业规范的行业,标准的培训评价是强诉求。贝壳找房基于事理图谱及对话技术,实现了智能培训应用,让经纪人可以通过人机对练,熟悉需掌握的标准作业流程,获取专业、一致的作业评价。同时,我们也沉淀了培训评价平台,可以支持作业之外的类似需求快速接入,如招聘等,甚至已成为部分岗位的定级标准。

听众收益:了解如何快速实现一套人机智能培训解决方案,获得深交互规则问题解读的基本方法。

新技术/实用技术点:事理图谱,智能对话,SOP挖掘

03

论坛报名

识别二维码,免费报名


 

OpenKG

开放知识图谱(简称 OpenKG)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

点击阅读原文,进入 OpenKG 网站。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/478615.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器翻译小记

神经网络翻译面临的挑战

赛尔原创 | N-LTP:基于预训练模型的中文自然语言处理平台

论文名称:N-LTP: A Open-source Neural Chinese Language Technology Platform with Pretrained Models论文作者:车万翔,冯云龙,覃立波,刘挺原创作者:冯云龙论文链接:https://arxiv.org/abs/200…

LeetCode 49. 字母异位词分组(哈希)

1. 题目 给定一个字符串数组,将字母异位词组合在一起。字母异位词指字母相同,但排列不同的字符串。 示例:输入: ["eat", "tea", "tan", "ate", "nat", "bat"], 输出: [["ate",…

论文浅尝 - SWJ | 基于知识图谱和注意力图卷积神经网络的可解释零样本学习

论文题目:Explainable Zero-shot Learning via Attentive Graph Convolutional Network and Knowledge Graphs本文作者:耿玉霞,浙江大学在读博士,研究方向为知识图谱、零样本学习、可解释性发表期刊:Semantic Web Jour…

LeetCode 3. 无重复字符的最长子串(滑动窗口+哈希)

1. 题目 给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: "abcabcbb" 输出: 3 解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。示例 2: 输入: "bbbbb" 输出: 1 解释: 因为无重…

安装kenlm出现问题的解决方案gcc g++

安装kenlm出现问题的解决方案 apt-get install gcc apt-get install g参考文章:gcc: error trying to exec ‘cc1plus’: execvp: No such file or directory

论文浅尝 - TACL2020 | 改进低资源跨语言实体链接的候选生成问题

论文笔记整理:谭亦鸣,东南大学博士。来源:TACL 2020链接:https://arxiv.org/ftp/arxiv/papers/2003/2003.01343.pdf1.背景介绍跨语言实体链接(Cross-lingual Entity Linking, XEL)旨在利用源语言文本中实体描述(提及),…

卫星系统——酒店后端全链路日志收集工具介绍

背景 随着酒店业务的高速发展,我们为用户、商家提供的服务越来越精细,系统服务化程度、复杂度也逐渐上升。微服务化虽然能够很好地解决问题,但也有副作用,比如,问题定位。 每次问题定位都需要从源头开始找同事帮我人肉…

拖拽式Vue组件代码生成平台(LCG)新版详细介绍

拖拽式Vue组件代码生成平台是一款小猴自研的Vue代码生成工具,英文全称:Low Code Generator,简称LCG。它也是一种LowCode解决方案。通过它可以快速完成Vue组件的代码骨架搭建,通过减少不必要的重复工作从而带来开发效率的提升。 体…

ImportError: libgthread-2.0.so.0: cannot open shared object file: No such file or directory

apt-get update apt-get install libglib2.0-dev系统:ubuntu16.04

LeetCode 454. 四数相加 II(哈希)

1. 题目 给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] B[j] C[k] D[l] 0。 为了使问题简单化,所有的 A, B, C, D 具有相同的长度 N,且 0 ≤ N ≤ 500 。所有整数的范围在 -228 到 228 - 1 之间…

论文浅尝 - AAAI2020 | 多轮对话系统中的历史自适应知识融合机制

论文笔记整理:潘锐,天津大学硕士。链接:https://www.aaai.org/ojs/index.php/AAAI/article/view/6425来 源:AAAI 2020论文简介保持对话的一致性和避免内容重复是构建以知识为基础的多轮对话系统的两个关键因素。尽管一些工作倾…

高性能平台设计—美团旅行结算平台实践

本文根据第23期美团技术沙龙演讲内容整理而成。 背景 美团酒旅有很多条业务线,例如酒店、门票、火车票等等,每种业务都有结算诉求,而结算处于整个交易的最后一环不可缺少,因此我们将结算平台化,来满足业务的结算诉求。…

小程序调试技术导读

近期团队内在自研小程序,我负责开发者工具中的调试部分。调试作为面向开发者的基础能力,扮演了极为重要的角色。 本篇文章是导读文章。 调试能力从0到1一共经历了4个版本,接下来的文章将会以这4个版本为主线分别进行介绍。 初始版 上图为调试…

可交互的 Attention 可视化工具!我的Transformer可解释性有救了?

文 | Sherry视觉是人和动物最重要的感觉,至少有80%以上的外界信息是经过视觉获得的。我们看论文的时候,通过图表来确定文章的大致内容往往也是一个更高效的 说到深度神经网络的可视化,最经典的莫过于的CNN密恐图了:这种可视化方法…

ImportError: libSM.so.6: cannot open shared object file: No such file or dir

ImportError: libSM.so.6: cannot open shared object file: No such file or dir 出现错误: ImportError: libSM.so.6: cannot open shared object file: No such file or dir 解决方法: apt-get install libsm6如果你出现了上面的错误,那…

LeetCode 347. 前 K 个高频元素(哈希/优先队列)

文章目录1. 题目2. 解题2.1 哈希2.2 优先队列1. 题目 给定一个非空的整数数组,返回其中出现频率前 k 高的元素。 示例 1: 输入: nums [1,1,1,2,2,3], k 2 输出: [1,2]示例 2: 输入: nums [1], k 1 输出: [1] 说明: 你可以假设给定的 k 总是合理的&…

Lego-美团接口自动化测试实践

一、概述 1.1 接口自动化概述 众所周知,接口自动化测试有着如下特点: 低投入,高产出。比较容易实现自动化。和UI自动化测试相比更加稳定。如何做好一个接口自动化测试项目呢? 我认为,一个“好的”自动化测试项目&#…

小程序调试技术详解(基于小猴小程序)

本篇文章主要围绕小猴小程序调试技术第三版进行展开。 在上一篇导读文章中提到,小猴小程序的调试部分从无到有一共经历了3个版本。本篇文章会详细描述面向开发者的调试功能是如何实现的。 文章将会描述以下部分: 调试实现的基本通信关系结构。如何实现…

论文浅尝 - CIKM2020 | 用于推荐系统的多模态知识图谱

论文笔记整理:王琰,东南大学硕士。来源:CIKM 2020链接:https://doi.org/10.1145/3340531.3411947研究背景与任务描述为了解决推荐系统中的数据稀疏和冷启动问题,研究人员通过利用有价值的外部知识作为辅助信息&#xf…