Spark Streaming + Elasticsearch构建App异常监控平台

本文已发表在《程序员》杂志2016年10月期。

如果在使用App时遇到闪退,你可能会选择卸载App、到应用商店怒斥开发者等方式来表达不满。但开发者也同样感到头疼,因为崩溃可能意味着用户流失、营收下滑。为了降低崩溃率,进而提升App质量,App开发团队需要实时地监控App异常。一旦发现严重问题,及时进行热修复,从而把损失降到最低。App异常监控平台,就是将这个方法服务化。

低成本

小型创业团队一般会选择第三方平台提供的异常监控服务。但中型以上规模的团队,往往会因为不想把核心数据共享给第三方平台,而选择独立开发。造轮子,首先要考虑的就是成本问题。我们选择了站在开源巨人的肩膀上,如图1所示。

图1 数据流向示意图

Spark Streaming

每天来自客户端和服务器的大量异常信息,会源源不断的上报到异常平台的Kafka中,因此我们面临的是一个大规模流式数据处理问题。美团点评数据平台提供了Storm和Spark Streaming两种流式计算解决方案。我们主要考虑到团队之前在Spark批处理方面有较多积累,使用Spark Streaming成本较低,就选择了后者。

Elasticsearch

Elasticsearch(后文简称ES),是一个开源搜索引擎。不过在监控平台中,我们是当做“数据库”来使用的。为了降低展示层的接入成本,我们还使用了另一个开源项目ES SQL提供类SQL查询。ES的运维成本,相对 SQL on HBase方案也要低很多。整个项目开发只用了不到700行代码,开发维护成本还是非常低的。那如此“简单”的系统,可用性可以保证吗?

高可用

Spark Streaming + Kafka的组合,提供了“Exactly Once”保证:异常数据经过流式处理后,保证结果数据中(注:并不能保证处理过程中),每条异常最多出现一次,且最少出现一次。保证Exactly Once是实现24/7的高可用服务最困难的地方。在实际生产中会出现很多情况,对Exactly Once的保证提出挑战:

异常重启

Spark提供了Checkpoint功能,可以让程序再次启动时,从上一次异常退出的位置,重新开始计算。这就保证了即使发生异常情况,也可以实现每条数据至少写一次HDFS。再覆写相同的HDFS文件就保证了Exactly Once(注:并不是所有业务场景都允许覆写)。写ES的结果也一样可以保证Exactly Once。你可以把ES的索引,就当成HDFS文件一样来用:新建、删除、移动、覆写。 作为一个24/7运行的程序,在实际生产中,异常是很常见的,需要有这样的容错机制。但是否遇到所有异常,都要立刻挂掉再重启呢?显然不是,甚至在一些场景下,你即使重启了,还是会继续挂掉。我们的解决思路是:尽可能把异常包住,让异常发生时,暂时不影响服务。

图 2 作业异常重启架构图

如图2所示,包住异常,并不意味可以忽略它,必须把异常收集到Spark Driver端,接入监控(报警)系统,人工判断问题的严重性,确定修复的优先级。 为了更好地掌控Spark Streaming服务的状态,我们还单独开发了一个作业调度(重启)工具。美团点评数据平台安全认证的有效期是7天,一般离线的批处理作业很少会运行超过这个时间,但Spark Streaming作业就不同了,它需要一直保持运行,所以作业只要超过7天就会出现异常。因为没有找到优雅的解决方案,只好粗暴地利用调度工具,每周重启刷新安全认证,来保证服务的稳定。

升级重导

Spark提供了2种读取Kafka的模式:“Receiver-based Approach”和“Direct Approach”。使用Receiver模式,在极端情况下会出现Receiver OOM问题。 使用Direct模式可以避免这个问题。我们使用的就是这种Low-level模式,但在一些情况下需要我们自己维护Kafka Offset: 升级代码:开启Checkpoint后,如果想改动代码,需要清空之前的Checkpoint目录后再启动,否则改动可能不会生效。但当这样做了之后,就会发现另一个问题——程序“忘记”上次读到了哪个位置,因为存储在Checkpoint中的Offset信息也一同被清空了。这种情况下,需要自己用ZooKeeper维护Kafka的Offset。 重导数据:重导数据的场景也是,当希望从之前的某一个时间点开始重新开始计算的时候,显然也需要自己维护时间和Offset的映射关系。 自己维护Offset的成本并不高,所以看起来Checkpoint功能很鸡肋。其实可以有一些特殊用法的,例如,因为Python不需要编译,所以如果使用的是PySpark,可以把主要业务逻辑写在提交脚本的外边,再使用Import调用。这样升级主要业务逻辑代码时,只要重启一下程序即可。网上有不少团队分享过升级代码的“黑科技”,这里不再展开。 实现24/7监控服务,我们不仅要解决纯稳定性问题,还要解决延迟问题。

低延迟

App异常监控,需要保证数据延迟在分钟级。 虽然Spark Streaming有着强大的分布式计算能力,但要满足用户角度的低延迟,可不是单纯的能计算完这么简单。

输入问题

iOS App崩溃时,会生成Crash Log,但其内容是一堆十六进制的内存地址,对开发者来说就是“天书”。只有经过“符号化”的Crash Log,开发者才能看懂。因为符号化需要在Mac环境下进行,而我们的Mac集群资源有限,不能符号化全部Crash Log。即使做了去重等优化,符号化后的数据流还是有延迟。每条异常信息中,包含N维数据,如果不做符号化只能拿到其中的M维。

图 3 双延迟乱序数据流融合示意图

如图3所示,我们将数据源分为符号化数据流、未符号化数据流,可以看出两个数据流的相对延迟时间T较稳定。如果直接使用符号化后的数据流,那么全部N维数据都会延迟时间T。为了降低用户角度的延迟,我们根据经验加大了时间窗口:先存储未符号化的M维数据,等到拿到对应的符号化数据后,再覆写全部N维数据,这样就只有N-M维数据延迟时间T了。

输出问题

如果Spark Streaming计算结果只是写入HDFS,很难遇到什么性能问题。但你如果想写入ES,问题就来了。因为ES的写入速度大概是每秒1万行,只靠增加Spark Streaming的计算能力,很难突破这个瓶颈。 异常数据源的特点是数据量的波峰波谷相差巨大。由于我们使用了 Direct 模式,不会因为数据量暴涨而挂掉,但这样的“稳定”从用户角度看没有任何意义:短时间内,数据延迟会越来越大,暴增后新出现的异常无法及时报出来。为了解决这个问题,我们制定了一套服务降级方案。

服务降级方案示意图

如图4所示,我们根据写ES的实际瓶颈K,对每个周期处理的全部数据N使用水塘抽样(比例K/N),保证始终不超过瓶颈。并在空闲时刻使用Spark批处理,将N-K部分从HDFS补写到ES。既然写ES这么慢,那我们为什么还要用ES呢?

高性能

开发者需要在监控平台上分析异常。实际分析场景可以抽象描述为:“实时 秒级 明细 聚合” 数据查询。 我们团队在使用的OLAP解决方案可以分为4种,它们各有各的优势:

  • SQL on HBase方案,例如:Phoenix、Kylin。我们团队从2015年Q1开始,陆续在SEM、SEO生产环境中使用Phoenix、Kylin至今。Phoenix算是一个“全能选手”,但更适合业务模式较固定的场景;Kylin是一个很不错的OLAP产品,但它的问题是不能很好支持实时查询和明细查询,因为它需要离线预聚合。另外,基于其他NoSQL的方案,基本大同小异,如果选择HBase,建议团队在HBase运维方面有一定积累。
  • SQL on HDFS方案,例如:Presto、Spark SQL。这两个产品,因为只能做到亚秒级查询,我们平时多用在数据挖掘的场景中。
  • 时序数据库方案,例如:Druid、OpenTSDB。OpenTSDB是我们旧版App异常监控系统使用过的方案,更适合做系统指标监控。
  • 搜索引擎方案,代表项目有ES。相对上面的3种方案,基于倒排索引的ES非常适合异常分析的场景,可以满足:实时、秒级、明细、聚合,全部4种需求。

ES在实际使用中的表现如何呢?

明细查询

支持明显查询,算是ES的主要特色,但因为是基于倒排索引的,明细查询的结果最多只能取到10000条。在异常分析中,使用明细查询的场景,其实就是追查异常Case,根据条件返回前100条就能满足需求了。例如:已知某设备出现了Crash,直接搜索这个设备的DeviceId就可以看到这个设备最近的异常数据。我们在生产环境中做到了95%的明细查询场景1秒内返回。

聚合查询

面对爆炸的异常信息,一味追求全是不现实,也是没必要的。开发者需要能快速发现关键问题。 因此平台需要支持多维度聚合查询,例如按模块版本机型城市等分类聚合,如图5所示。

图 5 聚合查询页面截图

不用做优化,ES聚合查询的性能就已经可以满足需求。因此,我们只做了一些小的使用改进,例如:很多异常数据在各个维度的值都是相同的,做预聚合可以提高一些场景下的查询速度。开发者更关心最近48小时发生的异常,分离冷热数据,自动清理历史数据也有助于提升性能。最终在生产环境中,做到了90%的聚合查询场景1秒内返回。

可扩展

异常平台不止要监控App Crash,还要监控服务端的异常、性能等。不同业务的数据维度是不同的,相同业务的数据维度也会不断的变化,如果每次新增业务或维度都需要修改代码,那整套系统的升级维护成本就会很高。

维度

为了增强平台的可扩展性,我们做了全平台联动的动态维度扩展:如果App开发人员在日志中新增了一个“城市”维度,那么他不需要联系监控平台做项目排期,立刻就可以在平台中查询“城市”维度的聚合数据。只需要制定好数据收集、数据处理、数据展示之间的交互协议,做到动态维度扩展就很轻松了。需要注意的是,ES中需要聚合的维度,Index要设置为“not_analyzed”。 想要支持动态字段扩展,还要使用动态模板,样例如下:

{"mappings": {"es_type_name": {"dynamic_templates": [{"template_1": {"match": "*log*","match_mapping_type": "string","mapping": {"type": "string"}}},{"template_2": {"match": "*","match_mapping_type": "string","mapping": {"type": "string","index": "not_analyzed"}}}]}}
}

资源

美团点评数据平台提供了Kafka、Spark、ES的集群,整套技术栈在资源上也是分布式可扩展的。 线上集群使用的版本: - kafka-0.8.2.0 - spark-1.5.2 - elasticsearch-2.1.1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/478191.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何看待NLP领域的内卷:我不配找工作?

在过去几年时间里,NLP领域取得了飞速的发展,这也推动了NLP在产业中的持续落地,以及行业对相关人才的需求。 但这里我们要面对的现实是,行业上90%以上的NLP工程师是“不合格的”。在过去几个月时间里,我们其实也面试过数…

LeetCode 537. 复数乘法

文章目录1. 题目2. 字符串提取数字1. 题目 给定两个表示复数的字符串。 返回表示它们乘积的字符串。注意,根据定义 i2 -1 。 示例 1: 输入: "11i", "11i" 输出: "02i" 解释: (1 i) * (1 i) 1 i2 2 * i 2i ,你需…

Storm 的可靠性保证测试

Storm 是一个分布式的实时计算框架,可以很方便地对流式数据进行实时处理和分析,能运用在实时分析、在线数据挖掘、持续计算以及分布式 RPC 等场景下。Storm 的实时性可以使得数据从收集到处理展示在秒级别内完成,从而为业务方决策提供实时的数…

NLP数据增强、数据增广

点击上方,选择星标或置顶,每天给你送干货! 作者:李博涵 来自:哈工大SCIR 1.摘要 本文介绍自然语言处理领域的数据增广方法。数据增广(Data Augmentation,也有人将Data Augmentation翻译为“数据…

开源开放|CCKS2021入选开放图谱资源简介

笔记整理 | 王萌(东南大学)、张宁豫(浙江大学)全国知识图谱与语义计算大会(CCKS)由中国中文信息学会语言与知识计算专委会定期举办的国内知识图谱、语义技术等领域的核心会议。知识图谱以结构化的形式描述真…

腾讯天衍实验室招聘科研实习生

致力于连接最靠谱的算法岗与最强的求职者招聘贴投放请联系微信xixiaoyao-1腾讯天衍实验室专注于AI算法研究及落地,旨在依托NLP、知识图谱、大数据、医疗影像等技术系统,将算法能力输出到公卫、医保、基层辅助诊断等领域的行业解决方案,以及腾…

LeetCode 475. 供暖器(双指针二分查找)

文章目录1. 题目2. 解题2.1 双指针2. 二分查找1. 题目 冬季已经来临。 你的任务是设计一个有固定加热半径的供暖器向所有房屋供暖。 现在,给出位于一条水平线上的房屋和供暖器的位置,找到可以覆盖所有房屋的最小加热半径。 所以,你的输入将…

ReactiveCocoa核心元素与信号流

ReactiveCocoa(以下简称“RAC”)是一个函数响应式编程框架,它能让我们脱离Cocoa API的束缚,给我们提供另外一套编码的思路与可能性,它能在宏观层面上提升代码易读性与稳定性,让程序员写出富有“诗意”的代码…

【安利向】入坑半年的GPU云平台,三分钟训练起飞!xiu~

大家好,我是Joyce,和小瑶一样,也是搞算法的,不过还在学术界摸鱼,偶尔能抓到一条顶会锦鲤,大多数时候,都是一些小鱼小虾,目前已被boss放养,每周组会都是隐形人...转眼&…

rocketQA学习笔记

端到端问答系统 rocketQA 问答技术发展回顾:

开源开放 | 糖尿病知识图谱DiaKG(CCKS2021)

OpenKG地址:http://openkg.cn/dataset/diakg阿里云天池:https://tianchi.aliyun.com/dataset/dataDetail?dataId88836开放许可协议:CC BY-SA 4.0 (署名相似共享)贡献者:妙健康(常德杰、刘朝振、…

LeetCode 501. 二叉搜索树中的众数(中序遍历)

文章目录1. 题目2. 中序遍历1. 题目 给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。 假定 BST 有如下定义: 结点左子树中所含结点的值小于等于当前结点的值 结点右子树…

开源开放 | 移动应用知识图谱MAKG(CCKS2021)

OpenKG地址:http://openkg.cn/dataset/makgGitHub地址:https://github.com/Everglow123/MAKGMAKG网站:http://www.makg.com.cn开放许可协议:CC BY-SA 4.0 (署名相似共享)贡献者:东南大学(周恒、…

恕我直言,你的实验结论可能严重依赖随机数种子!

文 | python编 | 小轶God does not play dice with the universe ......But BERT Does !包括BERT在内的预训练模型已经是现今NLP工作的标配。但你有没有考虑过,这些工作的实验结论可能都是虚假的?在 Bertology 中,大家从 huggingface 上下载 …

Spring MVC注解故障追踪记

Spring MVC是美团点评很多团队使用的Web框架。在基于Spring MVC的项目里,注解的使用几乎遍布在项目中的各个模块,有Java提供的注解,如:Override、Deprecated等;也有Spring提供的注解,如:Control…

LeetCode 951. 翻转等价二叉树(递归)

文章目录1. 题目2. 递归解题1. 题目 我们可以为二叉树 T 定义一个翻转操作,如下所示:选择任意节点,然后交换它的左子树和右子树。 只要经过一定次数的翻转操作后,能使 X 等于 Y,我们就称二叉树 X 翻转等价于二叉树 Y…

开源开放 | 开源大学在线实践数据集及知识图谱MOOPer(CCKS2021)

OpenKG地址:http://openkg.cn/dataset/mooper头歌平台:https://www.educoder.net/ch/rest开放许可协议:CC BY-SA 4.0 (署名相似共享)贡献者:湖南智擎科技有限公司(黄井泉)&#xff0…

python实现文件传输

发送者: send_file.py def send_file(filename: str "mytext.txt", testing: bool False) -> None:import socketport 12312 # Reserve a port for your service.sock socket.socket() # Create a socket objecthost socket.gethostname() # …

不同于NLP,数据驱动、机器学习无法攻克NLU,原因有三

文 | Walid S. Saba源 | 机器之心自然语言理解(NLU)是人工智能的核心课题之一,也被广泛认为是最困难和最具标志性的任务。近年来,机器学习虽然被广泛使用,但是却不能很好的解决自然语言理解问题,其中可能涉…

分布式系统互斥性与幂等性问题的分析与解决

随着互联网信息技术的飞速发展,数据量不断增大,业务逻辑也日趋复杂,对系统的高并发访问、海量数据处理的场景也越来越多。如何用较低成本实现系统的高可用、易伸缩、可扩展等目标就显得越发重要。为了解决这一系列问题,系统架构也…