图谱实战 | 徐美兰:深度应用驱动的医学知识图谱构建

转载公众号 | DataFunSummit


9797815a81e15aab493635f91e5c0d84.png

分享嘉宾:徐美兰 浙江数字医疗卫生技术研究院 数字医学知识中心主任

编辑整理:李杰 京东

出品平台:DataFunTalk

导读:数研院这些年在知识图谱建设上取得了丰硕成果,今天我们将图谱构建过程中的经验、心得分享给大家,欢迎大家讨论交流。本次分享的题目为:深度应用驱动的医学知识图谱构建,主要内容包含4方面:

  • 国内外医学知识图谱发展情况

  • 医学知识图谱的领域特征和应用需求

  • 数研院医学知识图谱构建:模型建立、“七巧板”本体术语集构建、“汇知”图谱构建

  • 医学知识图谱应用案例

01

国内外医学知识图谱发展情况

1. 知识图谱概念

知识图谱广义概念:作为一种技术体系,指大数据知识工程的一系列代表性技术的总称。

知识图谱狭义概念:作为一种知识表示形式,知识图谱是一种大规模语义网络,包含实体、概念及其之间的各种语义关系。如下图中的二甲双胍知识图谱片段。

a4cde2db8056bfadd2d20497699165d8.png

2. 国外医学知识图谱

UMLS:由美国国家医学图书馆自1986年起研究和开发的一体化医学语言系统,包含超级词表、语义网络、专业词典和词汇处理工具。其规模:语义网络包含133种语义类型,54中语义关系。超级叙词表包含300多万概念,1300多万概念名称。

SNOMED CT:2002年1月,SNOMED首次发布,它由两大医学术语SNOMED RT与CTV3合并而来,国际版SNOMED CT在每年的1月和7月更新一次。SNOMED CT核心构建是概念、描述(术语)和关系。其规模:目前包含19种语义类型,50多种语义关系,35万概念,120万描述(术语),110万关系。

3. 国内医学知识图谱

CUMLS:由中国医学科学院医学信息研究所基于UMLS开发的中文一体化医学语言系统,包含医学词表、语义网、构建工具与平台。其规模:共收录医学主题词3万余条、入口词3万余条、医学术语10万余条、医学词汇素材30万余条。

医药卫生知识服务系统:由中国医学科学院医学信息研究所承建,通过对资源的深度挖掘和关联分析,建设了知识图谱、知识脉络分析等特色知识服务和应用。其规模:已发布疾病和药品领域知识图谱,其中疾病涵盖心脑血管疾病、呼吸系统疾病、免疫系统疾病、消化系统疾病、肿瘤等。

中医药知识图谱:中国中医科学院中医药信息研究所依托中医药学语言系统(TCMLS)构建了中医药知识图谱。其类型包括:基于中医药学语言系统的知识图谱、中医美容知识图谱、中医养生知识图谱、中国临床知识图谱。

OpenKG:由中国中文信息学会倡导的中文领域开放知识图谱社区项目,主要工作内容包括:OpenKG.CN(开放图谱资源库)、cnSchema(中文开放图谱Schema)和Openbae(开放知识图谱众包平台)。

02

医学知识图谱的领域特征和应用需求

1. 医学知识的特点

医学术语多样性:不同知识源对同一个概念采用了不同术语进行表达。比如:糖尿病又可称为消渴症、消渴、DM等。

精度要求高:医学知识专业性强,医学应用场景容错率低,因此医学知识图谱的精确度要求高。

复杂度高:医学是经验总结的科学,医学概念的内涵往往比较丰富,且有些医学知识复杂很难用简单三元组表达。

2. 医学知识图谱应用场景

医学知识图谱的不同应用场景需求侧重点也有所不同,需要最大化的满足才能提高图谱的适用性。如下所示:

96b43b4bbb32a42a2a0593e3dca7d39b.png

3. 定制化解决方案

为满足行业深度应用需求,医学知识图谱构建时需引入更多定制化解决方案,如下所示:

c49e299624fe10bada485ae9a595d66f.png

03

数研院医学知识图谱构建

1. 模型建立

医学领域的知识图谱由于其知识专业性强,行业通常采用自上而下的方式,先构建Schema,再抽取知识。

数研院医学知识图谱Schema主要参考了UMLS语义网络、Schema.org、cnSchema等。相关数据涉及四大领域:疾病、药品、手术操作、检验检查。当然我们在知识图谱的构建过程中,会根据抽取和应用的实际情况,不断完善和优化Schema。数研院医学知识图谱于2019年8月首次发布Schema,目前包含72种语义类型、493种语义关系。Schema查询和下载地址为:http://schema.omaha.org.cn/class/Thing#。

Schema分别用于指导“七巧板”医学本体术语集和“汇知”医学知识图谱的构建,完善医学知识表达的体系。我们之所以在一个模型指导下构建两个知识库,是为了解决不同的问题。“七巧板”采用本体解决与逻辑定义(即内涵定义)相关的关系,以及层次关系。“汇知”采用语义网络解决可能性、经验性的关系,并且无层次关系。具体请看下图:

b4c3dc3babdc026d1d9cd40dc29cd124.png

2. “七巧板”本体术语集构建

本体术语集的构建整体有6个步骤,依次如下所示:

Step1:确定领域范畴。当前我们以满足临床诊疗需求为切入点,开始尝试构建医学知识图谱。主要涉及范围:疾病、症状、体征,手术操作、检验检查,药品,人体形态结构,基因,医疗器械。

Step2:选取合适的知识源。充分收录行业现行标准、教科书、指南等权威知识源,并同时补充临床病历、互联网诊疗中的术语等。

Step3:梳理重要术语。梳理领域中的重要术语,并由领域专家进行语义层面的实体归一,完成概念化。相关流程如下所示:

37cf83a5702b70cbb0f090a188b615c2.png

Step4:建立关系。“七巧板”医学本体术语集的核心构建包括:概念、术语、关系及映射。如下图所示:

ba3acbb620f03504a90d5780fe0b49db.png

充分保留知识源中的已有层级关系,通过机器推理、人工添加的方式进行优化。挖掘知识源中的属性关系,并通过机器推荐、人工添加进行补充。制定明确的映射规则,采用机器推荐、专家审核的方式建立映射。

Step5:存储和浏览。采用关系型数据库,分为概念表、术语表、关系表、映射表进行存储,且保留历史痕迹。术语浏览器实现术语集构建的快速查找,并可按需实现子集定制。如查看关系操作如下所示:

01f8b2786f4e1f84dc06d23f9b4b3c30.png

Step6:平台及工具支撑。自研的知识库维护平台(CoWork),内嵌术语集研制规则,支持多人共同协作。CoWork中“七巧板”的功能如下所示:

98f027da6264f630c775e177d5db9590.png

CoWork中术语集编辑器可实现概念层面的编辑功能需求,并支持多人同时在线协作,协作方式为不创建分支,采用编辑锁。术语映射工具利用算法推荐,调高映射效率。目前“七巧板”术语集收录97万概念、123万术语和292万关系,包含疾病、操作、药品等语义类型。我们在持续进行更新维护,按季度发布,每季度第一个月20号发布新版本。

3. “汇知”图谱构建

“汇知”知识图谱的构建有五个步骤,分别如下:

Step1:选取合适的知识源。选取临床指南、临床路径、医学书籍文献等权威知识源,并同时补充医学百科类知识。简言之,即非结构化知识源+半结构化知识源+结构化知识源。

Step2:知识抽取。具体内容包括:实体识别和关系抽取。

实体识别通过基于规则的命名实体识别+专家审核提高标注效率,产生的标注数据用于训练深度学习模型。具体流程如下所示:

aa9387c1660b191d7f49a504b800395b.png

关系抽取基于实体识别的结果,专家标注关系,产生的标注数据用于句法规则总结和半监督学习。具体流程如下所示:

2125ddb77bf1b8c7497830baed348d56.png

Step3:知识融合。最大化地将“汇知”图谱与“七巧板”术语集融合,可为图谱的深度应用打下基础。其过程大致包括实体归一、实体对齐、关系融合等阶段。具体操作如下所示:

2541109a2e18d971cb25ffb200a0d8f1.png

Step4:知识存储和检索。除传统的三元组外,加入“属性组”和“来源”字段,使知识表达更加准确,同时确保知识的可溯源性。保留三元组的来源,满足三元组在不同场景应用的需求。还可通过可视化搜索,快速直观地查看图谱数据,如下图所示:

c1c8d1f97ed6d80b6933c96665b4c43e.png

Step5:平台及工具支撑。自研知识库维护平台(CoWork),内嵌知识图谱集研制规则,支持多人共同协作。CoWork中“汇知”的功能描述如下:

2c6ceb17a03b039ba02e1e055e2ddfaf.png

用户可创建多种自定义标注方案,批量上传和分配任务,在基于brat的文本标注工具上,各地志愿者可合作共建知识图谱。“汇知”图谱目前已发布7个领域,共计约11万实体,82万三元组,每个季度第二个月20号发布新版本。前述7个领域如下所示:

2ec0f5a51191ef8e0e40673e590d9a57.png

最后,数研院发起的知识图谱协作项目已持续开展5年,已有百名个人志愿者、多家优秀企业参与。贡献榜如下所示:

d8e41fa0bb704ce27c6942879e3576df.png

04

医学知识图谱应用案例

1. 智能预警

知识图谱作为底层支撑,辅以更多规则,实现更全面的临床诊疗推理。如下低钾案例所示:

cf5eb3401a48ea66a1bd2ba880d0cf4b.png

此外,还可基于知识图谱进行推理,实现实验室危急结果的预警和处方异常预警。如下胸痛案例所示:

86daeec21b63b5c990cd40c1e5b2c573.png

2. 指南推荐

基于医学本体层级关系推理后进行推荐,使推荐结果更丰富。如下科塔尔综合征案例所示:

fa574f96b716b5cde07c5166a99f995a.png

另外,还可根据患者信息,推荐相似病历、临床路径、指南等,辅助医生制定治疗计划、规范治疗流程。如下案例所示:

e1f4489c233aa1582d2c914aa65b08e0.png

3. 数据直报

将医学知识图谱中的部分内容作为信息模型中的值集,实现医疗数据与医学知识之间的绑定。术语绑定指:将医学术语集中的概念分配临床信息模型中的具体数据单元,从而实现医学术语和临床信息模型的联系和赋予某种程度上的语义。读者可参考下图理解:

f383140028d5202b08cd9e9e1df73022.png

也可在信息系统中提前设定相应规则,基于“法定传染病”子集,进行传染病直报判断与提示。如下图所示:

d9ac4913e57ddddd5f4156210c39b92c.png

除此以外,其他应用还包括:智能编码、科研分析等。如果读者感兴趣可关注我们的官网动态~

今天的分享就到这里,谢谢大家。


分享嘉宾:

ffd1700910809732303c097aac1530b5.png


OpenKG

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

b159056d722fbe4d329cad876dbbb1c9.png

点击阅读原文,进入 OpenKG 网站。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/477881.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

6 年大厂面试官,谈谈我对算法岗面试的一些看法

文 | 不敢透露姓名的 Severus 和小轶面试官坐在那撇着大嘴的,“咳,给你一机会,最短的时间内让我记住你。”这个我会,我抡圆了“啪!”,扭头我就走。我刚到家,录取通知书就来了,请你务…

美团Android自动化之旅—生成渠道包

每当发新版本时,美团团购Android客户端会被分发到各个应用市场,比如豌豆荚,360手机助手等。为了统计这些市场的效果(活跃数,下单数等),需要有一种方法来唯一标识它们。 团购客户端目前通过渠道号…

开源开放 | 细粒度可循证医学文档知识融合表示和推理(CCKS2021)

OpenKG地址:http://openkg.cn/dataset/mdo-dataset开放许可协议:GPL 3.0贡献者:武汉科技大学(高峰、龚珊珊、顾进广、徐芳芳)摘要本开放资源在医学文档知识的基础上,使用知识图谱相关技术,解决了…

图灵奖大佬 Lecun 发表对比学习新作,比 SimCLR 更好用!

文 | Rukawa_Y编 | 智商掉了一地,Sheryc_王苏比 SimCLR 更好用的 Self-Supervised Learning,一起来看看吧!Self-Supervised Learning作为深度学习中的独孤九剑,当融汇贯通灵活应用之后,也能打败声名在外的武当太极剑。…

5whys分析法在美团工程师中的实践

前言 网站的质量和稳定性对于用户和公司来说至关重要,但是在网站的快速发展过程中,由于各种原因导致事故不可避免的发生,这些大大小小的事故对公司难免会造成一些负面的影响,为了避免同类事故的再次发生,美团的工程师们…

LeetCode 382. 链表随机节点(概率)

1. 题目 给定一个单链表,随机选择链表的一个节点,并返回相应的节点值。保证每个节点被选的概率一样。 进阶: 如果链表十分大且长度未知,如何解决这个问题?你能否使用常数级空间复杂度实现? 来源:力扣&am…

图谱实战 | 斯坦福黄柯鑫:图机器学习在生物图上的应用

转载公众号 | DataFunSummit分享嘉宾:黄柯鑫 斯坦福大学 博士生编辑整理:元玉蒲 西北大学出品平台:DataFunTalk导读:大家好,我叫黄柯鑫。我现在是斯坦福大学的计算机科学博士第一年级,研究方向是机器学习在…

排得更好VS估得更准VS搜的更全「推荐、广告、搜索」算法间到底有什么区别?...

文 | 王喆源 | 王喆的机器学习笔记作为互联网的核心应用“搜广推”,三个方向基本都是互联网公司的标配。各头部公司的搜广推系统也都各自发展成了集成了多种模型、算法、策略的庞然大物,想一口气讲清楚三者的区别并不容易。不过万事总有一个头绪&#xf…

Solr Facet技术的应用与研究

问题背景 在《搜索引擎关键字智能提示的一种实现》一文中介绍过,美团的CRM系统负责管理销售人员的门店(POI)和项目(DEAL)信息,提供统一的检索功能,其索引层采用的是SolrCloud。在用户搜索时,如果能直观地给出每个品类的POI数目&am…

LeetCode 129. 求根到叶子节点数字之和(DFS)

1. 题目 给定一个二叉树,它的每个结点都存放一个 0-9 的数字,每条从根到叶子节点的路径都代表一个数字。 例如,从根到叶子节点路径 1->2->3 代表数字 123。 计算从根到叶子节点生成的所有数字之和。 说明: 叶子节点是指没有子节点的…

推荐精排之锋:FM的一小步,泛化的一大步

文 | 水哥源 | 知乎1.如果说LR是复读机,那么FM可以算作是电子词典2.泛化就是我没见过你,我也能懂你,但是泛化有时候和个性化有点矛盾,属于此消彼长的关系3.实践中的泛化往往来源于拆解,没见过组成的产品,但…

图谱实战 | 阿里周晓欢:如何将实体抽取从生成问题变成匹配问题?

转载公众号 | DataFunSummit分享嘉宾:周晓欢 阿里巴巴 算法专家编辑整理:刘香妍 中南财经政法大学出品平台:DataFunSummit导读:实体抽取或者说命名实体识别 ( NER ) 在信息抽取中扮演着重要角色,常见的实体抽取多是对文…

剖析 Promise 之基础篇

随着浏览器端异步操作复杂程度的日益增加,以及以 Evented I/O 为核心思想的 NodeJS 的持续火爆,Promise、Async 等异步操作封装由于解决了异步编程上面临的诸多挑战,得到了越来越广泛的应用。本文旨在剖析 Promise 的内部机制,从实…

LeetCode 318. 最大单词长度乘积(位运算)

1. 题目 给定一个字符串数组 words,找到 length(word[i]) * length(word[j]) 的最大值,并且这两个单词不含有公共字母。你可以认为每个单词只包含小写字母。如果不存在这样的两个单词,返回 0。 示例 1: 输入: ["abcw","baz&…

百度研究院商业智能实验室招聘研究实习生!

致力于连接最靠谱的算法岗与最强的求职者招聘贴投放请联系微信xixiaoyao-1岗位职责:同实验室的数据科学家和工程师一起参与研发前沿的机器学习技术,主要内容为对前沿技术进行调研,复现前沿科研成果在顶级会议和期刊上发表论文支持及落地百度飞…

论文浅尝 | KGNLI: 知识图谱增强的自然语言推理模型

笔记整理 | 韩振峰,天津大学硕士链接:https://aclanthology.org/2020.coling-main.571.pdf动机自然语言推理 (NLI) 是自然语言处理中的一项重要任务,它旨在识别两个句子之间的逻辑关系。现有的大多数方法都是基于训练语料库来获得语义知识从而…

block在美团iOS的实践

说到block,相信大部分iOS开发者都会想到retain cycle或是__block修饰的变量。 但是本文将忽略这些老生常谈的讨论,而是将重点放在美团iOS在实践中对block的应用,希望能对同行有所助益。 本文假设读者对block有一定的了解。 从闭包说起 在Lisp…

写Rap,编菜谱,你画我猜……这些 AI demo 我可以玩一天!

文 | ZenMoore编 | 小轶上次写的那篇 《Prompt 综述15篇最新论文梳理]》 有亿点点肝。这次给大家整点轻松好玩的(顺便给这篇推文打个广告,快去看!)。不知道读者朋友们有没有遇到这样的情况:有新的论文发表了&#xff0…

LeetCode 1254. 统计封闭岛屿的数目(图的BFS DFS)

文章目录1. 题目2. 解题2.1 DFS2.2 BFS1. 题目 有一个二维矩阵 grid ,每个位置要么是陆地(记号为 0 )要么是水域(记号为 1 )。 我们从一块陆地出发,每次可以往上下左右 4 个方向相邻区域走,能…

技术动态 | 图对比学习的最新进展

转载公众号 | DataFunSummit 分享嘉宾:朱彦樵 中国科学院自动化研究所编辑整理:吴祺尧 加州大学圣地亚哥分校出品平台:DataFunSummit导读:本文跟大家分享下图自监督学习中最近比较热门的研究方向:图对比学习&#xff0…