04.卷积神经网络 W2.深度卷积网络:实例探究(作业:Keras教程+ResNets残差网络)

文章目录

  • 作业1:Keras教程
    • 1. 快乐的房子
    • 2. 用Keras建模
    • 3. 用你的图片测试
    • 4. 一些有用的Keras函数
  • 作业2:残差网络 Residual Networks
    • 1. 深层神经网络的问题
    • 2. 建立残差网络
      • 2.1 identity恒等模块
      • 2.2 卷积模块
    • 3. 建立你的第一个残差网络(50层)
    • 4. 用自己的照片测试

测试题:参考博文

笔记:04.卷积神经网络 W2.深度卷积网络:实例探究

作业1:Keras教程

Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行。
Keras 的开发重点是支持快速的实验。能够以最小的时延把你的想法转换为实验结果,是做好研究的关键。

Keras 是更高级的框架,对普通模型来说很友好,但是要实现更复杂的模型需要 TensorFlow 等低级的框架

  • 导入一些包
import numpy as np
from keras import layers
from keras.layers import Input, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D
from keras.layers import AveragePooling2D, MaxPooling2D, Dropout, GlobalMaxPooling2D, GlobalAveragePooling2D
from keras.models import Model
from keras.preprocessing import image
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras.applications.imagenet_utils import preprocess_input
import pydot
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
from keras.utils import plot_model
from kt_utils import *import keras.backend as K
K.set_image_data_format('channels_last')
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow%matplotlib inline

1. 快乐的房子

问题背景:快乐的房子的门口的摄像头会识别你的表情是否是 Happy 的,是 Happy 的,门才会打开,哈哈!

我们要建模自动识别表情是否快乐!

  • 归一化图片数据,了解数据维度
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()# Normalize image vectors
X_train = X_train_orig/255.
X_test = X_test_orig/255.# Reshape
Y_train = Y_train_orig.T
Y_test = Y_test_orig.Tprint ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))

输出:

number of training examples = 600
number of test examples = 150
X_train shape: (600, 64, 64, 3)
Y_train shape: (600, 1)
X_test shape: (150, 64, 64, 3)
Y_test shape: (150, 1)

600个训练样本,150个测试样本,图片维度 64*64*3 = 12288

2. 用Keras建模

Keras 可以快速建模,且模型效果不错

举个例子:

def model(input_shape):# 定义输入的 placeholder 作为 tensor with shape input_shape. # 想象这是你的图片输入X_input = Input(input_shape)# Zero-Padding: pads the border of X_input with zeroesX = ZeroPadding2D((3, 3))(X_input)# CONV -> BN -> RELU Block applied to XX = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0')(X)X = BatchNormalization(axis = 3, name = 'bn0')(X)X = Activation('relu')(X)# MAXPOOLX = MaxPooling2D((2, 2), name='max_pool')(X)# FLATTEN X (means convert it to a vector) + FULLYCONNECTEDX = Flatten()(X)X = Dense(1, activation='sigmoid', name='fc')(X)# Create model. This creates your Keras model instance, # you'll use this instance to train/test the model.model = Model(inputs = X_input, outputs = X, name='HappyModel')return model

本次作业很open,可以自由搭建模型,修改超参数,请注意各层之间的维度匹配

Keras Model 类参考链接

  • 定义模型
# GRADED FUNCTION: HappyModeldef HappyModel(input_shape):"""Implementation of the HappyModel.Arguments:input_shape -- shape of the images of the datasetReturns:model -- a Model() instance in Keras"""### START CODE HERE #### Feel free to use the suggested outline in the text above to get started, and run through the whole# exercise (including the later portions of this notebook) once. The come back also try out other# network architectures as well. X_input = Input(input_shape)X = ZeroPadding2D((3,3))(X_input)X = Conv2D(32,(7,7), strides = (1,1), name='conv0')(X)X = BatchNormalization(axis = 3, name='bn0')(X)X = Activation('relu')(X)X = MaxPooling2D((2,2), name='max_pool')(X)X = Flatten()(X)X = Dense(1, activation='sigmoid', name='fc')(X)model = Model(inputs = X_input, outputs = X, name='HappyModel')### END CODE HERE ###return model
  • 创建模型实例
happyModel = HappyModel(X_train[0].shape)
  • 配置训练模型
import keras
opt = keras.optimizers.Adam(learning_rate=0.01)
happyModel.compile(optimizer=opt, loss=keras.losses.BinaryCrossentropy(),metrics=['acc'])
  • 训练 并 存储返回的训练过程数据用于可视化
history = happyModel.fit(x=X_train, y=Y_train, validation_split=0.25, batch_size=32, epochs=30)
  • 绘制训练过程
# 绘制训练 & 验证的准确率值
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()# 绘制训练 & 验证的损失值
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
。。。省略
Epoch 29/30
15/15 [==============================] 
- 2s 148ms/step - loss: 0.1504 - acc: 0.9733 - val_loss: 0.1518 - val_acc: 0.9600
Epoch 30/30
15/15 [==============================] 
- 2s 147ms/step - loss: 0.1160 - acc: 0.9711 - val_loss: 0.2242 - val_acc: 0.9333

准确率
损失

  • 测试模型效果
### START CODE HERE ### (1 line)
from keras import metrics
preds = happyModel.evaluate(X_test, Y_test, batch_size=32, verbose=1, sample_weight=None)
### END CODE HERE ###
print(preds)print ("Loss = " + str(preds[0]))
print ("Test Accuracy = " + str(preds[1]))

输出:

5/5 [==============================] - 0s 20ms/step - loss: 0.2842 - acc: 0.9400
[0.28415805101394653, 0.9399999976158142]
Loss = 0.28415805101394653
Test Accuracy = 0.9399999976158142

3. 用你的图片测试

### START CODE HERE ###
img_path = 'images/1.jpg'
### END CODE HERE ###
img = image.load_img(img_path, target_size=(64, 64))
imshow(img)x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)print(happyModel.predict(x))

预测正确 1笑脸

4. 一些有用的Keras函数

  • happyModel.summary() 模型的结构,参数等信息
happyModel.summary()
Model: "HappyModel"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 64, 64, 3)]       0         
_________________________________________________________________
zero_padding2d (ZeroPadding2 (None, 70, 70, 3)         0         
_________________________________________________________________
conv0 (Conv2D)               (None, 64, 64, 32)        4736      
_________________________________________________________________
bn0 (BatchNormalization)     (None, 64, 64, 32)        128       
_________________________________________________________________
activation (Activation)      (None, 64, 64, 32)        0         
_________________________________________________________________
max_pool (MaxPooling2D)      (None, 32, 32, 32)        0         
_________________________________________________________________
flatten (Flatten)            (None, 32768)             0         
_________________________________________________________________
fc (Dense)                   (None, 1)                 32769     
=================================================================
Total params: 37,633
Trainable params: 37,569
Non-trainable params: 64
_________________________________________________________________
  • plot_model() 把模型结构保存成图片

模型结构

作业2:残差网络 Residual Networks

使用残差网络能够训练更深的神经网络,普通的深层神经网络是很难训练的。

  • 导入包
import numpy as np
from keras import layers
from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D
from keras.models import Model, load_model
from keras.preprocessing import image
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras.applications.imagenet_utils import preprocess_input
import pydot
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
from keras.utils import plot_model
from resnets_utils import *
from keras.initializers import glorot_uniform
import scipy.misc
from matplotlib.pyplot import imshow
%matplotlib inlineimport keras.backend as K
K.set_image_data_format('channels_last')
K.set_learning_phase(1)

1. 深层神经网络的问题

深层网络优点:

  • 可以表示复杂的函数
  • 可以学习很多不同层次的特征(低层次,高层次)

缺点:

  • 梯度消失/爆炸,梯度变的非常小或者非常大


随着迭代次数增加,浅层的梯度很快的就降到 0

2. 建立残差网络

通过跳跃的连接,允许梯度直接反向传到浅层

  • 跳跃连接使得模块更容易学习恒等函数
  • 残差模块不会损害训练效果

残差网络有两种类型的模块,主要取决于输入输出的维度是否一样

2.1 identity恒等模块

结构1
结构2
下面我们要实现:跳过3个隐藏层的结构,其稍微更强大一些

convolution2d 参考:https://keras.io/api/layers/convolution_layers/convolution2d/

batch_normalization 参考:
https://keras.io/api/layers/normalization_layers/batch_normalization/

add 参考:
https://keras.io/api/layers/merging_layers/add/

# GRADED FUNCTION: identity_blockdef identity_block(X, f, filters, stage, block):"""Implementation of the identity block as defined in Figure 3Arguments:X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)f -- integer, specifying the shape of the middle CONV's window for the main pathfilters -- python list of integers, defining the number of filters in the CONV layers of the main pathstage -- integer, used to name the layers, depending on their position in the networkblock -- string/character, used to name the layers, depending on their position in the networkReturns:X -- output of the identity block, tensor of shape (n_H, n_W, n_C)"""# defining name basisconv_name_base = 'res' + str(stage) + block + '_branch'bn_name_base = 'bn' + str(stage) + block + '_branch'# Retrieve FiltersF1, F2, F3 = filters# Save the input value. You'll need this later to add back to the main path. X_shortcut = X# First component of main pathX = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)X = Activation('relu')(X)### START CODE HERE #### Second component of main path (≈3 lines)X = Conv2D(filters = F2, kernel_size=(f, f), strides = (1, 1), padding='same', name=conv_name_base+'2b', kernel_initializer=glorot_uniform(seed=0))(X)X = BatchNormalization(axis=3, name=bn_name_base+'2b')(X)X = Activation('relu')(X)# Third component of main path (≈2 lines)X = Conv2D(filters=F3, kernel_size=(1,1), strides=(1,1), padding='valid', name=conv_name_base+'2c', kernel_initializer=glorot_uniform(seed=0))(X)X = BatchNormalization(axis=3, name=bn_name_base+'2c')(X)# Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)X = Add()([X_shortcut, X])X = Activation('relu')(X)### END CODE HERE ###return X

测试代码:

# import tensorflow.compat.v1 as tf
# tf.disable_v2_behavior()tf.reset_default_graph()with tf.Session() as test:np.random.seed(1)A_prev = tf.placeholder("float", [3, 4, 4, 6])X = np.random.randn(3, 4, 4, 6)A = identity_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a')test.run(tf.global_variables_initializer())out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0})print("out = " + str(out[0][1][1][0]))

输出:

out = [0.19716819 0.         1.3561226  2.1713073  0.         1.3324987 ]

2.2 卷积模块

该模块可以适用于:输入输出维度不匹配的情况

其 跳跃连接上有一个 CONV2D 卷积层,它没有使用非线性激活函数,作用是改变输入的维度,使后面的加法维度匹配

# GRADED FUNCTION: convolutional_blockdef convolutional_block(X, f, filters, stage, block, s = 2):"""Implementation of the convolutional block as defined in Figure 4Arguments:X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)f -- integer, specifying the shape of the middle CONV's window for the main pathfilters -- python list of integers, defining the number of filters in the CONV layers of the main pathstage -- integer, used to name the layers, depending on their position in the networkblock -- string/character, used to name the layers, depending on their position in the networks -- Integer, specifying the stride to be usedReturns:X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)"""# defining name basisconv_name_base = 'res' + str(stage) + block + '_branch'bn_name_base = 'bn' + str(stage) + block + '_branch'# Retrieve FiltersF1, F2, F3 = filters# Save the input valueX_shortcut = X##### MAIN PATH ###### First component of main path X = Conv2D(F1, (1, 1), strides = (s,s), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)X = Activation('relu')(X)### START CODE HERE #### Second component of main path (≈3 lines)X = Conv2D(F2, (f,f), strides=(1,1),padding='same',name=conv_name_base+'2b',kernel_initializer=glorot_uniform(seed=0))(X)X = BatchNormalization(axis=3, name=bn_name_base+'2b')(X)X = Activation('relu')(X)# Third component of main path (≈2 lines)X = Conv2D(F3,(1,1), strides=(1,1),padding='valid',name=conv_name_base+'2c',kernel_initializer=glorot_uniform(seed=0))(X)X = BatchNormalization(axis=3, name=bn_name_base+'2c')(X)##### SHORTCUT PATH #### (≈2 lines)X_shortcut = Conv2D(F3, (1,1), strides=(s,s),padding='valid',name=conv_name_base+'1',kernel_initializer=glorot_uniform(seed=0))(X_shortcut)X_shortcut = BatchNormalization(axis=3, name=bn_name_base+'1')(X_shortcut)# Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)X = Add()([X, X_shortcut])X = Activation('relu')(X)### END CODE HERE ###return X

测试:

tf.reset_default_graph()with tf.Session() as test:np.random.seed(1)A_prev = tf.placeholder("float", [3, 4, 4, 6])X = np.random.randn(3, 4, 4, 6)A = convolutional_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a')test.run(tf.global_variables_initializer())out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0})print("out = " + str(out[0][1][1][0]))

输出:

out = [0.09018463 1.2348979  0.46822023 0.03671762 0.         0.65516603]

3. 建立你的第一个残差网络(50层)

模型结构

ID(Identity)恒等模块,ID BLOCK x3 表示恒等模块3次

pooling 参考 https://keras.io/zh/layers/pooling/

# GRADED FUNCTION: ResNet50def ResNet50(input_shape = (64, 64, 3), classes = 6):"""Implementation of the popular ResNet50 the following architecture:CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3-> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYERArguments:input_shape -- shape of the images of the datasetclasses -- integer, number of classesReturns:model -- a Model() instance in Keras"""# Define the input as a tensor with shape input_shapeX_input = Input(input_shape)# Zero-PaddingX = ZeroPadding2D((3, 3))(X_input)# Stage 1X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X)X = BatchNormalization(axis = 3, name = 'bn_conv1')(X)X = Activation('relu')(X)X = MaxPooling2D((3, 3), strides=(2, 2))(X)# Stage 2X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1)X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')### START CODE HERE #### Stage 3 (≈4 lines)X = convolutional_block(X, f=3, filters=[128,128,512], stage=3, block='a', s=2)X = identity_block(X, 3, [128,128,512],stage=3, block='b')X = identity_block(X, 3, [128,128,512],stage=3, block='c')X = identity_block(X, 3, [128,128,512],stage=3, block='d')# Stage 4 (≈6 lines)X = convolutional_block(X, f=3, filters=[256,256,1024], stage=4, block='a', s=2)X = identity_block(X, 3, [256,256,1024],stage=4, block='b')X = identity_block(X, 3, [256,256,1024],stage=4, block='c')X = identity_block(X, 3, [256,256,1024],stage=4, block='d')X = identity_block(X, 3, [256,256,1024],stage=4, block='e')X = identity_block(X, 3, [256,256,1024],stage=4, block='f')# Stage 5 (≈3 lines)X = convolutional_block(X, f=3, filters=[512,512,2048], stage=5, block='a', s=2)X = identity_block(X, 3, [512,512,2048], stage=5, block='b')X = identity_block(X, 3, [512,512,2048], stage=5, block='c')# AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)"X = AveragePooling2D(pool_size=(2,2))(X)### END CODE HERE #### output layerX = Flatten()(X)X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X)# Create modelmodel = Model(inputs = X_input, outputs = X, name='ResNet50')return model
  • 建立模型
model = ResNet50(input_shape = (64, 64, 3), classes = 6)
  • 配置模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
  • 数据导入 + one_hot 编码
    手势数字数据集
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()# Normalize image vectors
X_train = X_train_orig/255.
X_test = X_test_orig/255.# Convert training and test labels to one hot matrices
Y_train = convert_to_one_hot(Y_train_orig, 6).T
Y_test = convert_to_one_hot(Y_test_orig, 6).Tprint ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))

输出:

number of training examples = 1080
number of test examples = 120
X_train shape: (1080, 64, 64, 3)
Y_train shape: (1080, 6)
X_test shape: (120, 64, 64, 3)
Y_test shape: (120, 6)
  • 训练(迭代两次测试下)
model.fit(X_train, Y_train, epochs = 2, batch_size = 32)

输出:(损失在下降,准确率在上升)

Epoch 1/2
1080/1080 [==============================] 
- 208s 192ms/step - loss: 2.6086 - acc: 0.3037
Epoch 2/2
1080/1080 [==============================] 
- 193s 178ms/step - loss: 2.2677 - acc: 0.3972
  • 测试
preds = model.evaluate(X_test, Y_test)
print ("Loss = " + str(preds[0]))
print ("Test Accuracy = " + str(preds[1]))

输出:(准确率 19%)

120/120 [==============================] - 5s 38ms/step
Loss = 12.753657023111979
Test Accuracy = 0.19166666467984517

该模型训练2次效果很差,训练更多次效果才会好(时间比较久)

老师直接给出了训练好的模型

model = load_model('ResNet50.h5') 
preds = model.evaluate(X_test, Y_test)
print ("Loss = " + str(preds[0]))
print ("Test Accuracy = " + str(preds[1]))
Loss = 0.5301782568295796
Test Accuracy = 0.8666667

老师给的 ResNets 残差网络 预测准确率为 86.7%
前次作业中 TF 3层网络模型的预测准确率为 72.5%

4. 用自己的照片测试

import imageioimg_path = 'images/my_image.jpg'
img = image.load_img(img_path, target_size=(64, 64))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print('Input image shape:', x.shape)
my_image = imageio.imread(img_path)
imshow(my_image)
print("class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = ")
print(model.predict(x))

输出:

Input image shape: (1, 64, 64, 3)
class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = 
[[1. 0. 0. 0. 0. 0.]]

  • 模型结构总结
model.summary()
Model: "ResNet50"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 64, 64, 3)]  0                                            
__________________________________________________________________________________________________
zero_padding2d_1 (ZeroPadding2D (None, 70, 70, 3)    0           input_1[0][0]                    
__________________________________________________________________________________________________
conv1 (Conv2D)                  (None, 32, 32, 64)   9472        zero_padding2d_1[0][0]           
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization)   (None, 32, 32, 64)   256         conv1[0][0]                      
__________________________________________________________________________________________________
activation_4 (Activation)       (None, 32, 32, 64)   0           bn_conv1[0][0]                   
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D)  (None, 15, 15, 64)   0           activation_4[0][0]               
__________________________________________________________________________________________________
res2a_branch2a (Conv2D)         (None, 15, 15, 64)   4160        max_pooling2d_1[0][0]            
________________________________________________________________________省略省略省略省略
省略省略省略省略add_16 (Add)                    (None, 2, 2, 2048)   0           bn5b_branch2c[0][0]              activation_46[0][0]              
__________________________________________________________________________________________________
activation_49 (Activation)      (None, 2, 2, 2048)   0           add_16[0][0]                     
__________________________________________________________________________________________________
res5c_branch2a (Conv2D)         (None, 2, 2, 512)    1049088     activation_49[0][0]              
__________________________________________________________________________________________________
bn5c_branch2a (BatchNormalizati (None, 2, 2, 512)    2048        res5c_branch2a[0][0]             
__________________________________________________________________________________________________
activation_50 (Activation)      (None, 2, 2, 512)    0           bn5c_branch2a[0][0]              
__________________________________________________________________________________________________
res5c_branch2b (Conv2D)         (None, 2, 2, 512)    2359808     activation_50[0][0]              
__________________________________________________________________________________________________
bn5c_branch2b (BatchNormalizati (None, 2, 2, 512)    2048        res5c_branch2b[0][0]             
__________________________________________________________________________________________________
activation_51 (Activation)      (None, 2, 2, 512)    0           bn5c_branch2b[0][0]              
__________________________________________________________________________________________________
res5c_branch2c (Conv2D)         (None, 2, 2, 2048)   1050624     activation_51[0][0]              
__________________________________________________________________________________________________
bn5c_branch2c (BatchNormalizati (None, 2, 2, 2048)   8192        res5c_branch2c[0][0]             
__________________________________________________________________________________________________
add_17 (Add)                    (None, 2, 2, 2048)   0           bn5c_branch2c[0][0]              activation_49[0][0]              
__________________________________________________________________________________________________
activation_52 (Activation)      (None, 2, 2, 2048)   0           add_17[0][0]                     
__________________________________________________________________________________________________
avg_pool (AveragePooling2D)     (None, 1, 1, 2048)   0           activation_52[0][0]              
__________________________________________________________________________________________________
flatten_1 (Flatten)             (None, 2048)         0           avg_pool[0][0]                   
__________________________________________________________________________________________________
fc6 (Dense)                     (None, 6)            12294       flatten_1[0][0]                  
==================================================================================================
Total params: 23,600,006
Trainable params: 23,546,886
Non-trainable params: 53,120
  • 绘制模型结构图
plot_model(model, to_file='model.png')
SVG(model_to_dot(model).create(prog='dot', format='svg'))

图片很长,只截取部分
模型结构图
参考论文

  • Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun - Deep Residual Learning for Image Recognition (2015)
  • Francois Chollet’s github repository: https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py

我的CSDN博客地址 https://michael.blog.csdn.net/

长按或扫码关注我的公众号(Michael阿明),一起加油、一起学习进步!
Michael阿明

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/473974.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

为文本框加注释

var gzj $get("keyWords"); //得到dom对象 gzj.parentNode.appendChild(document.createTextNode("注:关键字以逗号隔开")); //给dom对象加后续东西 //手动添加检定周期单位:月function addInspectCycleUnit(){ var cycle…

JS字符串与定时器

js字符串方法 1.字符串的拼接通过 号 var sTr1 "abc"; varsTr2 "123"; var sTr3 sTr1 sTr2 2.字符串的类型转换 str.split("") var sTr 12; parseInt(sTr) parseFloat() 3.字符串分割成数组 var sDate "2017-3-12"; // …

反汇编

ILT Incremental Link Table 这个ILT其实就是一个静态的表,它记录了一些函数的入口然后跳过去,每个跳转jmp占一个字节,然后就是一个四字节的内存地址,所以加起为五个字节,这样就实现了类的机制。 6605*132 代表是调用的…

安装Python第三方库的常用方法和注意事项

安装Python的库 这里,我来介绍一下平时我们安装python库的几种常用方法和一些注意事项。 第一种,使用我们的pip工具 第二种,使用IDE中集成的功能进行一键安装(以Pycharm 为例) 第三种,使用Anaconda进行安装 使用 pip 工具安装第三…

LeetCode 968. 监控二叉树(DFS)

文章目录1. 题目2. 解题1. 题目 给定一个二叉树,我们在树的节点上安装摄像头。 节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。 计算监控树的所有节点所需的最小摄像头数量。 示例 1: 输入:[0,0,null,0,0] 输出&#xff…

Jquery基础知识

jquery是一个功能强大的第三方库,目前被广泛使用, 微软更是将其作为官方库; 内部封装适配多浏览器,运行速率高于原生 1、写得少,做得多 2、运行速度快 jqurey通过选择器获取标签 $(#myId) //选择id为myId的网页元素 $(.myClass) // 选择class为myClass的元素 $(li)…

【笔试or面试】金山西山居2014校招笔试题

1.32位环境下 #include <stdio.h> #include <iostream> #include <cstring> using namespace std;int main() {char t1[] "ab\0cd";char t2[6] "abcd\0";int t3[4] {0, 0, \0};printf("%d\n",sizeof(t1));printf("%d\…

HTML+CSS+JS面试题(附带答案)

一、单项选择(165题) 1.HTML是什么意思&#xff1f; A)高级文本语言 B)超文本标记语言 C)扩展标记语言 D)图形化标记语言 2.浏览器针对于HTML文档起到了什么作用&#xff1f; A)浏览器用于创建HTML文档 B)浏览器用于查看HTML文档 C)浏览器用于修改HTML文档 D)浏览器用于删除HTM…

LeetCode 576. 出界的路径数(动态规划)

文章目录1. 题目2. 解题1. 题目 给定一个 m n 的网格和一个球。 球的起始坐标为 (i,j) &#xff0c;你可以将球移到相邻的单元格内&#xff0c;或者往上、下、左、右四个方向上移动使球穿过网格边界。 但是&#xff0c;你最多可以移动 N 次。 找出可以将球移出边界的路径数量…

视频参数(流媒体系统,封装格式,视频编码,音频编码,播放器)对比

发现了几个视频参数对比的资源&#xff0c;是Wikipedia上的&#xff0c;总结的非常好&#xff1a; 流媒体系统对比&#xff1a; http://en.wikipedia.org/wiki/Comparison_of_streaming_media_systems 封装格式对比&#xff1a; http://en.wikipedia.org/wiki/Comparison_of_co…

HTML试题及答案(总结)

HTML练习题1&#xff08;选择题&#xff09; 一、选择 1.在一个框架的属性面板中&#xff0c;不能设置下面哪一项。&#xff08; &#xff09; A&#xff0e;源文件 ; B&#xff0e;边框颜色 ; C&#xff0e;边框宽度 D&#xff0e;滚动条 2. 下列哪一…

04.卷积神经网络 W3.目标检测

文章目录1. 目标定位2. 特征点检测3. 目标检测4. 滑动窗口的卷积实现5. Bounding Box预测&#xff08;YOLO&#xff09;6. 交并比7. 非极大值抑制8. Anchor Boxes9. YOLO 算法10. 候选区域作业参考&#xff1a; 吴恩达视频课 深度学习笔记 1. 目标定位 定位分类问题&#xff…

P2P中的NAT穿越方案简介

文章链接&#xff1a; http://www.shipin.it/Index/videolist/id/68.html 转载于:https://www.cnblogs.com/lolita/p/3334029.html

Python面试必须要看的15个问题

问题1 到底什么是Python&#xff1f;你可以在回答中与其他技术进行对比&#xff08;也鼓励这样做&#xff09;。 答案 下面是一些关键点&#xff1a; Python是一种解释型语言。这就是说&#xff0c;与C语言和C的衍生语言不同&#xff0c;Python代码在运行之前不需要编译。其他…

LeetCode 988. 从叶结点开始的最小字符串(DFS)

文章目录1. 题目2. 解题1. 题目 给定一颗根结点为 root 的二叉树&#xff0c;树中的每一个结点都有一个从 0 到 25 的值&#xff0c;分别代表字母 a 到 z&#xff1a;值 0 代表 a&#xff0c;值 1 代表 b&#xff0c;依此类推。 找出按字典序最小的字符串&#xff0c;该字符串…

Humble Numbers USCAO chapter 3.1

...目测我自己写坑定超时,就去NOCOW看了下,题解,官方是每个质数与已有的humble想乘取大于最大humble的最小数即是新的最大humble, 然后我就写了个个,开始嫌麻烦用set存,超时的飞起。然后全部改成数组,结果case 6还是超时,想了半天感觉和别人的题解也没啥差别,为什么运行时间差这…

LeetCode 636. 函数的独占时间(栈)

文章目录1. 题目2. 解题1. 题目 给出一个非抢占单线程CPU的 n 个函数运行日志&#xff0c;找到函数的独占时间。 每个函数都有一个唯一的 Id&#xff0c;从 0 到 n-1&#xff0c;函数可能会递归调用或者被其他函数调用。 日志是具有以下格式的字符串&#xff1a;function_id…

网关详解

计算机主机网关的作用是什么&#xff1f; 假设你的名字叫小不点&#xff0c;你住在一个大院子里&#xff0c;你的邻居有很多小伙伴&#xff0c;在门口传达室还有个看大门的李大爷&#xff0c;李大爷就是你的网关。当你想跟院子里的某个小伙伴玩&#xff0c;只要你在院子里大喊一…

Javascript复习题

Javascript复习题 一、选择题 1、写“Hello World”的正确javascript语法是&#xff1f; (A) A.document.write("Hello World") B. "Hello World" C.response.write("Hello World") D…

04.卷积神经网络 W3.目标检测(作业:自动驾驶 - 汽车检测)

文章目录1. 问题背景2. YOLO 模型2.1 模型细节2.2 分类阈值过滤2.3 非极大值抑制2.4 完成过滤3. 在照片上测试已预训练的YOLO模型3.1 定义类别、anchors、图片尺寸3.2 加载已预训练的模型3.3 模型输出转化为可用的边界框变量3.4 过滤边界框3.5 在图片上运行测试题&#xff1a;参…