LeetCode 956. 最高的广告牌(DP)

文章目录

    • 1. 题目
    • 2. 解题

1. 题目

你正在安装一个广告牌,并希望它高度最大。
这块广告牌将有两个钢制支架,两边各一个。每个钢支架的高度必须相等

你有一堆可以焊接在一起的钢筋 rods。
举个例子,如果钢筋的长度为 1、2 和 3,则可以将它们焊接在一起形成长度为 6 的支架。

返回广告牌的最大可能安装高度。如果没法安装广告牌,请返回 0。

示例 1:
输入:[1,2,3,6]
输出:6
解释:我们有两个不相交的子集 {1,2,3}{6},它们具有相同的和 sum = 6。示例 2:
输入:[1,2,3,4,5,6]
输出:10
解释:我们有两个不相交的子集 {2,3,5}{4,6},它们具有相同的和 sum = 10。示例 3:
输入:[1,2]
输出:0
解释:没法安装广告牌,所以返回 0。提示:
0 <= rods.length <= 20
1 <= rods[i] <= 1000
钢筋的长度总和最多为 5000

来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/tallest-billboard
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 解题

  • dp[i][j] 表示处理完 i 钢筋,两边差距为 j 时,可以组成的最大高度
class Solution {
public:int tallestBillboard(vector<int>& rods) {if(rods.size() <= 1)return 0;int dp[20][5001], n = rods.size();int total = accumulate(rods.begin(), rods.end(), 0);// dp[i][j] 表示处理完 i 支架,两边差距为 j 时,可以组成的最大高度memset(dp, -1, sizeof(dp));dp[0][rods[0]] = dp[0][0] = 0;for(int i = 1; i < rods.size(); i++) {   //样本维度for(int j = 0; j <= total; ++j){if(dp[i-1][j] == -1)//上一行状态不存在continue;// 当前钢筋不要,丢弃dp[i][j] = max(dp[i][j], dp[i-1][j]);// 当前钢筋,加在长的一边dp[i][j+rods[i]] = max(dp[i][j+rods[i]], dp[i-1][j]);// 当前钢筋,加在短的一边,现在高度差为 abs(j-rods[i])dp[i][abs(j-rods[i])] = max(dp[i][abs(j-rods[i])], dp[i-1][j]+min(j, rods[i]));}}// 返回高度差为 0 的情况return dp[n-1][0]==-1 ? 0 : dp[n-1][0];}
};

40 ms 8.1 MB


我的CSDN博客地址 https://michael.blog.csdn.net/

长按或扫码关注我的公众号(Michael阿明),一起加油、一起学习进步!
Michael阿明

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/473766.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Tensorflow线程队列与IO操作

目录 Tensorflow线程队列与IO操作 1 线程和队列 1.1 前言 1.2 队列 1.3 队列管理器 1.4 线程协调器 2 文件读取 2.1 流程 2.2 文件读取API&#xff1a; 3 图像读取 3.1 图像读取基本知识 3.2 图像基本操作 3.3 图像读取API 3.4 图片批处理流程 3.5 读取图片案例 …

LeetCode 1298. 你能从盒子里获得的最大糖果数(BFS)

文章目录1. 题目2. 解题1. 题目 给你 n 个盒子&#xff0c;每个盒子的格式为 [status, candies, keys, containedBoxes] &#xff0c;其中&#xff1a; - 状态字 status[i]&#xff1a;整数&#xff0c;如果 box[i] 是开的&#xff0c;那么是 1 &#xff0c;否则是 0 。 - 糖…

给javascript初学者的24条最佳实践

1.使用 代替 JavaScript 使用2种不同的等值运算符&#xff1a;|! 和 |!&#xff0c;在比较操作中使用前者是最佳实践。 “如果两边的操作数具有相同的类型和值&#xff0c;返回true&#xff0c;!返回false。”——JavaScript&#xff1a;语言精粹 然而&#xff0c;当使用和&a…

LeetCode 1614. 括号的最大嵌套深度

文章目录1. 题目2. 解题1. 题目 如果字符串满足一下条件之一&#xff0c;则可以称之为 有效括号字符串&#xff08;valid parentheses string&#xff0c;可以简写为 VPS&#xff09;&#xff1a; 字符串是一个空字符串 ""&#xff0c;或者是一个不为 "("…

[AngularJS]Chapter 1 AnjularJS简介

创建一个完美的Web应用程序是很令人激动的&#xff0c;但是构建这样应用的复杂度也是不可思议的。我们Angular团队的目标就是去减轻构建这样AJAX应用的复杂度。在谷歌我们经历过各种复杂的应用创建工作比如&#xff1a;GMail、Map和日历。我们认为我们有必要把这些经验总结下来…

LeetCode 1615. 最大网络秩(出入度)

文章目录1. 题目2. 解题1. 题目 n 座城市和一些连接这些城市的道路 roads 共同组成一个基础设施网络。 每个 roads[i] [ai, bi] 都表示在城市 ai 和 bi 之间有一条双向道路。 两座不同城市构成的 城市对 的 网络秩 定义为&#xff1a;与这两座城市 直接 相连的道路总数。如果…

使用JSLint提高JS代码质量

随着富 Web 前端应用的出现&#xff0c;开发人员不得不重新审视并重视 JavaScript 语言的能力和使用&#xff0c;抛弃过去那种只靠“复制 / 粘贴”常用脚本完成简单前端任务的模式。JavaScript 语言本身是一种弱类型脚本语言&#xff0c;具有相对于 C 或 Java 语言更为松散的限…

Django工具:Git简介与基本操作

1.Git简介&#xff1a; 1.Git是目前世界上最先进的分布式版本控制系统 网址&#xff1a;http://github.com 2.总结git的两大特点&#xff1a; 版本控制&#xff1a;可以解决多人同时开发的代码问题&#xff0c;也可以解决找回历史代码的问题 分布式&#xff1a;Git是分布式…

LeetCode 1616. 分割两个字符串得到回文串

文章目录1. 题目2. 解题1. 题目 给你两个字符串 a 和 b &#xff0c;它们长度相同。 请你选择一个下标&#xff0c;将两个字符串都在 相同的下标 分割开。 由 a 可以得到两个字符串&#xff1a; aprefix 和 asuffix &#xff0c;满足 a aprefix asuffix &#xff0c;同理&am…

Kafka基础

Kafka基础 1 消息队列 1.1 什么是消息队列 消息队列&#xff08;MQ&#xff09;&#xff1a;消息队列&#xff0c;保存消息的队列。消息的传输过程中的容器&#xff1b;主要提供生产、消费接口供外部调用做数据的存储和获取。 1.2 为什么要有消息队列 当网站面对教大的流量…

系统总结学习 Python 的 14 张思维导图

本文主要涵盖了 Python 编程的核心知识&#xff08;暂不包括标准库及第三方库&#xff09;。 首先&#xff0c;按顺序依次展示了以下内容的一系列思维导图&#xff1a;基础知识&#xff0c;数据类型&#xff08;数字&#xff0c;字符串&#xff0c;列表&#xff0c;元组&#x…

LeetCode 1617. 统计子树中城市之间最大距离(枚举所有可能+图的最大直径)

文章目录1. 题目2. 解题1. 题目 给你 n 个城市&#xff0c;编号为从 1 到 n 。同时给你一个大小为 n-1 的数组 edges &#xff0c;其中 edges[i] [ui, vi] 表示城市 ui 和 vi 之间有一条双向边。 题目保证任意城市之间只有唯一的一条路径。换句话说&#xff0c;所有城市形成了…

MYSQL电脑客户端免安装教程以及出现问题解决方案

准备工作&#xff1a;window 7 64位旗舰版 MySQL 5.6.35免安装。 1. 下载MySQL 1.1 进入MySQL官网下载&#xff08;https://www.mysql.com/&#xff09;MySQL的安装包。 1.2. 根据自己电脑的位数(32位/64位)来下载响应的MySQL 、 2. 部署MySQL 2.1 解压压缩包到自己的某个盘…

[Kaggle] Digit Recognizer 手写数字识别(卷积神经网络)

文章目录1. 使用 LeNet 预测1.1 导入包1.2 建立 LeNet 模型1.3 读入数据1.4 定义模型1.5 训练1.6 绘制训练曲线1.7 预测提交2. 使用 VGG16 迁移学习2.1 导入包2.2 定义模型2.3 数据处理2.4 配置模型、训练2.5 预测提交Digit Recognizer 练习地址 相关博文&#xff1a; [Hands …

SparkCore基础

目录 Spark简介 1 什么是Spark 2 Spark特点 3 Spark分布式环境安装 3.1 Spark HA的环境安装 3.2 动态增删一个worker节点到集群 4 Spark核心概念 5 Spark案例 5.2 Master URL 5.3 spark日志的管理 5.4 WordCount案例程序的执行过程 6 Spark作业运行架构图&#xff…

LeetCode 1320. 二指输入的的最小距离(动态规划)

文章目录1. 题目2. 解题1. 题目 二指输入法定制键盘在 XY 平面上的布局如上图所示&#xff0c;其中每个大写英文字母都位于某个坐标处&#xff0c; 例如字母 A 位于坐标 (0,0)&#xff0c;字母 B 位于坐标 (0,1)&#xff0c;字母 P 位于坐标 (2,3) 且字母 Z 位于坐标 (4,1)。 …

SparkStreaming基础

目录 SparkStreaming基础 1 流式计算 1.1 常见的离线和流式计算框架 2 SparkStreaming简介 2.1 核心概念DStream 2.2 工作原理 2.3 Storm&#xff0c;SparkStreaming和Flink的对比 2.4 如何选择流式处理框架 3 SparkStreaming实时案例 3.1 StreamingContext和Receiver…

【Kaggle微课程】Natural Language Processing - 1. Intro to NLP

文章目录1. 使用 spacy 库进行 NLP2. Tokenizing3. 文本处理4. 模式匹配练习&#xff1a;食谱满意度调查1 在评论中找到菜单项2 对所有的评论匹配3 最不受欢迎的菜4 菜谱出现的次数learn from https://www.kaggle.com/learn/natural-language-processing 1. 使用 spacy 库进行…

【Kaggle微课程】Natural Language Processing - 2.Text Classification

文章目录1. bag of words2. 建立词袋模型3. 训练文本分类模型4. 预测练习&#xff1a;1. 评估方法2. 数据预处理、建模3. 训练4. 预测5. 评估模型6. 改进learn from https://www.kaggle.com/learn/natural-language-processing NLP中的一个常见任务是文本分类。这是传统机器学…

Django框架—富文本编辑器

借助富文本编辑器&#xff0c;网站的编辑人员能够像使用offfice一样编写出漂亮的、所见即所得的页面此处以tinymce为例&#xff0c;其它富文本编辑器的使用也是类似的在虚拟环境中安装包 pip install django-tinymce2.6.0安装完成后&#xff0c;可以使用在Admin管理中&#xf…