文章目录
- 1. 概述
- 2. 数据
- 3. 模型
- 4. 训练
- 5. 测试
参考 基于深度学习的自然语言处理
本文使用attention机制的模型,将各种格式的日期转化成标准格式的日期
1. 概述
- LSTM、GRU 减少了梯度消失的问题,但是对于复杂依赖结构的长句子,梯度消失仍然存在
- 注意力机制能同时看见句子中的每个位置,并赋予每个位置不同的权重(注意力),且可以并行计算
2. 数据
- 生成日期数据
from faker import Faker
from babel.dates import format_date
import random
fake = Faker()
fake.seed(123)
random.seed(321)# 各种日期格式
FORMATS = ['short','medium','long','full','full','full','full','full','full','full','full','full','full','d MMM YYY','d MMMM YYY','dd MMM YYY','d MMM, YYY','d MMMM, YYY','dd, MMM YYY','d MM YY','d MMMM YYY','MMMM d YYY','MMMM d, YYY','dd.MM.YY']
- 生成日期数据:随机格式(X),标准格式(Y)
def load_date():# 加载一些日期数据dt = fake.date_object() # 随机一个日期human_readable = format_date(dt, format=random.choice(FORMATS),locale='en_US')# 使用随机选取的格式,生成日期human_readable = human_readable.lower().replace(',','')machine_readable = dt.isoformat() # 标准格式return human_readable, machine_readable, dttest_date = load_date()
输出:
- 建立字典,以及映射关系(字符 :idx)
from tqdm import tqdm # 显示进度条
def load_dateset(num_of_data):human_vocab = set()machine_vocab = set()dataset = []Tx = 30 # 日期最大长度for i in tqdm(range(num_of_data)):h, m, _ = load_date()if h is not None:dataset.append((h, m))human_vocab.update(tuple(h))machine_vocab.update(tuple(m))human = dict(zip(sorted(human_vocab)+['<unk>', '<pad>'],list(range(len(human_vocab)+2))))# x 字符:idx 的映射inv_machine = dict(enumerate(sorted(machine_vocab)))# idx : y 字符machine = {v : k for k, v in inv_machine.items()}# y 字符 : idxreturn dataset, human, machine, inv_machinem = 10000 # 样本个数
dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dateset(m)
- 日期(char序列)转 ids 序列,并且 pad / 截断
import numpy as np
from keras.utils import to_categoricaldef string_to_int(string, length, vocab):string = string.lower().replace(',','')if len(string) > length: # 长了,截断string = string[:length]rep = list(map(lambda x : vocab.get(x, '<unk>'), string))# 对string里每个char 使用 匿名函数 获取映射的id,没有的话,使用unk的id,map返回迭代器,转成listif len(string) < length:rep += [vocab['<pad>']]*(length-len(string))# 长度不够,加上 pad 的 idreturn rep # 返回 [ids,...]
- 根据 ids 序列生成 one_hot 矩阵
def process_data(dataset, human_vocab, machine_vocab, Tx, Ty):X,Y = zip(*dataset)print("处理前 X:{}".format(X))print("处理前 Y:{}".format(Y))X = np.array([string_to_int(date, Tx, human_vocab) for date in X])Y = [string_to_int(date, Ty, machine_vocab) for date in Y]print("处理后 X的shape:{}".format(X.shape))print("处理后 Y: {}".format(Y))Xoh = np.array(list(map(lambda x : to_categorical(x, num_classes=len(human_vocab)), X)))Yoh = np.array(list(map(lambda x : to_categorical(x, num_classes=len(machine_vocab)), Y)))return X, np.array(Y), Xoh, Yoh
Tx = 30 # 输入长度
Ty = 10 # 输出长度
X, Y, Xoh, Yoh = process_data(dataset, human_vocab, machine_vocab, Tx, Ty)
检查生成的 one_hot 编码矩阵维度
print(X.shape)
print(Y.shape)
print(Xoh.shape)
print(Yoh.shape)
输出:
(10000, 30)
(10000, 10)
(10000, 30, 37)
(10000, 10, 11)
3. 模型
- softmax 激活函数,求注意力权重
from keras import backend as K
def softmax(x, axis=1):ndim = K.ndim(x)if ndim == 2:return K.softmax(x)elif ndim > 2:e = K.exp(x - K.max(x, axis=axis, keepdims=True))s = K.sum(e, axis=axis, keepdims=True)return e/selse:raise ValueError('维度不对,不能是1维')
- 模型组件
from keras.layers import RepeatVector, LSTM, Concatenate, \Dense, Activation, Dot, Input, Bidirectionalrepeator = RepeatVector(Tx) # 重复 Tx 次
# 重复器
# Input shape:
# 2D tensor of shape `(num_samples, features)`.
#
# Output shape:
# 3D tensor of shape `(num_samples, n, features)`.
concator = Concatenate(axis=-1) # 拼接器
densor1 = Dense(10, activation='tanh') # FC
densor2 = Dense(1, activation='relu') # FC
activator = Activation(softmax, name='attention_weights') # 计算注意力权重
dotor = Dot(axes=1) # 加权
- 模型
def one_step_attention(h, s_prev):s_prev = repeator(s_prev) # 将前一个输出状态重复 Tx 次concat = concator([h, s_prev]) # 与 全部句子状态 拼接e = densor1(concat) # 经过 FCenergies = densor2(e) # 经过FCalphas = activator(energies) # 得到注意力权重context = dotor([alphas, h]) # 跟原句子状态做attentionreturn context # 得到上下文向量,后序输入到解码器# 解码器,是一个单向LSTM
n_h = 32
n_s = 64
post_activation_LSTM_cell = LSTM(n_s, return_state=True) # 单向LSTM
output_layer = Dense(len(machine_vocab), activation=softmax) # FC 输出预测值from keras.models import Model
def model(Tx, Ty, n_h, n_s, human_vocab_size, machine_vocab_size):X = Input(shape=(Tx,human_vocab_size), name='input_first')s0 = Input(shape=(n_s,),name='s0')c0 = Input(shape=(n_s,),name='c0')s = s0c = c0outputs = []h = Bidirectional(LSTM(n_h, return_sequences=True))(X) # 编码器得到整个序列的状态for t in range(Ty): # 解码器 推理context = one_step_attention(h, s) # attention 得到上下文向量s, _, c = post_activation_LSTM_cell(context, initial_state=[s,c])out = output_layer(s) # FC 输出预测outputs.append(out)model = Model(inputs=[X,s0,c0], outputs=outputs)return modelmodel = model(Tx,Ty,n_h,n_s,len(human_vocab), len(machine_vocab))
model.summary()from keras.utils import plot_model
plot_model(model, to_file='model.png',show_shapes=True,rankdir='TB')
输出:
Model: "functional_1"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_first (InputLayer) [(None, 30, 37)] 0
__________________________________________________________________________________________________
s0 (InputLayer) [(None, 64)] 0
__________________________________________________________________________________________________
bidirectional (Bidirectional) (None, 30, 64) 17920 input_first[0][0]
__________________________________________________________________________________________________
repeat_vector (RepeatVector) (None, 30, 64) 0 s0[0][0] lstm[0][0] lstm[1][0] lstm[2][0] lstm[3][0] lstm[4][0] lstm[5][0] lstm[6][0] lstm[7][0] lstm[8][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 30, 128) 0 bidirectional[0][0] repeat_vector[0][0] bidirectional[0][0] repeat_vector[1][0] bidirectional[0][0] repeat_vector[2][0] bidirectional[0][0] repeat_vector[3][0] bidirectional[0][0] repeat_vector[4][0] bidirectional[0][0] repeat_vector[5][0] bidirectional[0][0] repeat_vector[6][0] bidirectional[0][0] repeat_vector[7][0] bidirectional[0][0] repeat_vector[8][0] bidirectional[0][0] repeat_vector[9][0]
__________________________________________________________________________________________________
dense (Dense) (None, 30, 10) 1290 concatenate[0][0] concatenate[1][0] concatenate[2][0] concatenate[3][0] concatenate[4][0] concatenate[5][0] concatenate[6][0] concatenate[7][0] concatenate[8][0] concatenate[9][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 30, 1) 11 dense[0][0] dense[1][0] dense[2][0] dense[3][0] dense[4][0] dense[5][0] dense[6][0] dense[7][0] dense[8][0] dense[9][0]
__________________________________________________________________________________________________
attention_weights (Activation) (None, 30, 1) 0 dense_1[0][0] dense_1[1][0] dense_1[2][0] dense_1[3][0] dense_1[4][0] dense_1[5][0] dense_1[6][0] dense_1[7][0] dense_1[8][0] dense_1[9][0]
__________________________________________________________________________________________________
dot (Dot) (None, 1, 64) 0 attention_weights[0][0] bidirectional[0][0] attention_weights[1][0] bidirectional[0][0] attention_weights[2][0] bidirectional[0][0] attention_weights[3][0] bidirectional[0][0] attention_weights[4][0] bidirectional[0][0] attention_weights[5][0] bidirectional[0][0] attention_weights[6][0] bidirectional[0][0] attention_weights[7][0] bidirectional[0][0] attention_weights[8][0] bidirectional[0][0] attention_weights[9][0] bidirectional[0][0]
__________________________________________________________________________________________________
c0 (InputLayer) [(None, 64)] 0
__________________________________________________________________________________________________
lstm (LSTM) [(None, 64), (None, 33024 dot[0][0] s0[0][0] c0[0][0] dot[1][0] lstm[0][0] lstm[0][2] dot[2][0] lstm[1][0] lstm[1][2] dot[3][0] lstm[2][0] lstm[2][2] dot[4][0] lstm[3][0] lstm[3][2] dot[5][0] lstm[4][0] lstm[4][2] dot[6][0] lstm[5][0] lstm[5][2] dot[7][0] lstm[6][0] lstm[6][2] dot[8][0] lstm[7][0] lstm[7][2] dot[9][0] lstm[8][0] lstm[8][2]
__________________________________________________________________________________________________
dense_2 (Dense) (None, 11) 715 lstm[0][0] lstm[1][0] lstm[2][0] lstm[3][0] lstm[4][0] lstm[5][0] lstm[6][0] lstm[7][0] lstm[8][0] lstm[9][0]
==================================================================================================
Total params: 52,960
Trainable params: 52,960
Non-trainable params: 0
________________________________________________________________________________________________
4. 训练
from keras.optimizers import Adam
# 优化器
opt = Adam(learning_rate=0.005, decay=0.01)
# 配置模型
model.compile(optimizer=opt, loss='categorical_crossentropy',metrics=['accuracy'])# 初始化 解码器状态
s0 = np.zeros((m, n_s))
c0 = np.zeros((m, n_s))
outputs = list(Yoh.swapaxes(0, 1))
# Yoh shape 10000*10*11,调换0,1轴,为10*10000*11
# outputs list,长度 10, 每个里面是array 10000*11history = model.fit([Xoh, s0, c0], outputs,epochs=10, batch_size=128,validation_split=0.1)
- 绘制 loss 和 各位置的准确率
from matplotlib import pyplot as plt
import pandas as pd
his = pd.DataFrame(history.history)
print(his.columns)
loss = history.history['loss']
val_loss = history.history['val_loss']plt.plot(loss, label='train Loss')
plt.plot(val_loss, label='valid Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.grid()
plt.show()# 列 具体的名字根据运行次数,会有变化
col_train_acc = ('dense_7_accuracy', 'dense_7_1_accuracy', 'dense_7_2_accuracy','dense_7_3_accuracy', 'dense_7_4_accuracy', 'dense_7_5_accuracy','dense_7_6_accuracy', 'dense_7_7_accuracy', 'dense_7_8_accuracy','dense_7_9_accuracy')
col_test_acc = ('val_dense_7_accuracy', 'val_dense_7_1_accuracy','val_dense_7_2_accuracy', 'val_dense_7_3_accuracy','val_dense_7_4_accuracy', 'val_dense_7_5_accuracy','val_dense_7_6_accuracy', 'val_dense_7_7_accuracy','val_dense_7_8_accuracy', 'val_dense_7_9_accuracy')
train_acc = pd.DataFrame(history.history[c] for c in col_train_acc)
test_acc = pd.DataFrame(history.history[c] for c in col_test_acc)train_acc.plot()
plt.title('Training Accuracy on pos')
plt.legend()
plt.grid()
plt.show()test_acc.plot()
plt.title('Validation Accuracy on pos')
plt.legend()
plt.grid()
plt.show()
5. 测试
s0 = np.zeros((1, n_s))
c0 = np.zeros((1, n_s))
test_data,_,_,_ = load_dateset(10)
for x,y in test_data:print(x + " ==> " +y)
for x,_ in test_data:source = string_to_int(x, Tx, human_vocab)source = np.array(list(map(lambda a : to_categorical(a, num_classes=len(human_vocab)), source)))source = source[np.newaxis, :]pred = model.predict([source, s0, c0])pred = np.argmax(pred, axis=-1)output = [inv_machine_vocab[int(i)] for i in pred]print('source:',x)print('output:',''.join(output))
输出:
18 april 2014 ==> 2014-04-18
saturday august 22 1998 ==> 1998-08-22
october 22 1995 ==> 1995-10-22
thursday february 29 1996 ==> 1996-02-29
wednesday october 17 1979 ==> 1979-10-17
7 12 73 ==> 1973-12-07
9/30/01 ==> 2001-09-30
22 may 2001 ==> 2001-05-22
7 march 1979 ==> 1979-03-07
19 feb 2013 ==> 2013-02-19
预测10个,错误了4个,日期字符不完全正确
source: 18 april 2014
output: 2014-04-18
source: saturday august 22 1998
output: 1998-08-22
source: october 22 1995
output: 1995-12-22 # 错误 10 月
source: thursday february 29 1996
output: 1996-02-29
source: wednesday october 17 1979
output: 1979-10-17
source: 7 12 73
output: 1973-02-07 # 错误 12月
source: 9/30/01
output: 2001-05-00 # 错误 09-30
source: 22 may 2001
output: 2011-05-22 # 错误 2001
source: 7 march 1979
output: 1979-03-07
source: 19 feb 2013
output: 2013-02-19