机器学习的过程中处理数据,会遇到数据可视化的问题.
大部分都是利用python的matplotlib库进行数据的可视化处理.
plt.show() 默认都是输出.png文件,图片只要稍微放大一点,就糊的不行.
下面给出一段正常进行数据处理可视化输出图片的代码
import pandas as pd
import matplotlib.pyplot as pltwith open('sourcedata2.csv')as f:df=pd.read_csv(f,header=0)X=df[df.columns[1:6]]
y=df['Vibration']
plt.figure()
f,ax1=plt.subplots()
for i in range(1,7):number=320+iax1.locator_params(nbins=3)ax1=plt.subplot(number)plt.title(list(df)[i])ax1.scatter(df[df.columns[i]],y)
plt.tight_layout(pad=0.4,w_pad=0.5,h_pad=1.0)
plt.show()
上面这段代码会直接显示出绘制的图像.我们可以将图片另存为.
但是我们是不是可以直接在代码中将图片进行保存呐?
matplotlib,pyplot中有一个内置函数savefig
查看savefig()函数的功能
savefig(*args, **kwargs)Save the current figure.Call signature::savefig(fname, dpi=None, facecolor='w', edgecolor='w',orientation='portrait', papertype=None, format=None,transparent=False, bbox_inches=None, pad_inches=0.1,frameon=None)The output formats available depend on the backend being used.Arguments:*fname*:A string containing a path to a filename, or a Pythonfile-like object, or possibly some backend-dependent objectsuch as :class:`~matplotlib.backends.backend_pdf.PdfPages`.If *format* is *None* and *fname* is a string, the outputformat is deduced from the extension of the filename. Ifthe filename has no extension, the value of the rc parameter``savefig.format`` is used.If *fname* is not a string, remember to specify *format* toensure that the correct backend is used.Keyword arguments:*dpi*: [ *None* | ``scalar > 0`` | 'figure']The resolution in dots per inch. If *None* it will default tothe value ``savefig.dpi`` in the matplotlibrc file. If 'figure'it will set the dpi to be the value of the figure.*facecolor*, *edgecolor*:the colors of the figure rectangle*orientation*: [ 'landscape' | 'portrait' ]not supported on all backends; currently only on postscript output*papertype*:One of 'letter', 'legal', 'executive', 'ledger', 'a0' through'a10', 'b0' through 'b10'. Only supported for postscriptoutput.*format*:One of the file extensions supported by the activebackend. Most backends support png, pdf, ps, eps and svg.
可以看到一个关键词参数format,it support png,pdf,ps,eps and svg.
重新实现上一段代码
X=df[df.columns[1:6]]
y=df['Vibration']
plt.figure()
f,ax1=plt.subplots()
for i in range(1,7):number=320+iax1.locator_params(nbins=3)ax1=plt.subplot(number)plt.title(list(df)[i])ax1.scatter(df[df.columns[i]],y)
plt.tight_layout(pad=0.4,w_pad=0.5,h_pad=1.0)
plt.savefig(fname="name",format="svg")
plt.show()
在plt.savefig()函数的format参数选择你需要保存图片的格式,和图片的名称fname="your picture name"
就可以实现图片多种格式的输出.
利用graphviz来绘制绘图
神经网络的图(也就是其基本的模型架构)可以使用process on 也可以在python库函数中进行绘制
from pydotplus import graphviz