神经网络编程入门

 

 

本文主要内容包括:

   (1) 介绍神经网络基本原理,

   (2) AForge.NET实现前向神经网络的方法,

   (3) Matlab实现前向神经网络的方法 。

 

0节、引例 

       本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set  找到。这里简要介绍一下Iris数据集:

有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。

  一种解决方法是用已有的数据训练一个神经网络用作分类器。

  如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。

 

第一节、神经网络基本原理 

1. 人工神经元( Artificial Neuron )模型 

       人工神经元是神经网络的基本元素,其原理可以用下图表示:

图1. 人工神经元模型

 

       图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

 

  图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:

 

  若用X表示输入向量,用W表示权重向量,即:

X = [ x0 , x1 , x2 , ....... , xn ]

 

  则神经元的输出可以表示为向量相乘的形式:

 

 

       若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。

       图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )

 

2. 常用激活函数 

       激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。

(1) 线性函数 ( Liner Function )

 

(2) 斜面函数 ( Ramp Function )

 

(3) 阈值函数 ( Threshold Function )

 

 

 

       以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。

(4) S形函数 ( Sigmoid Function )

  该函数的导函数:

(5) 双极S形函数 

  该函数的导函数:

  S形函数与双极S形函数的图像如下:


图3. S形函数与双极S形函数图像

  双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。

  由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导)

 

3. 神经网络模型 

       神经网络是由大量的神经元互联而构成的网络。根据网络中神经元的互联方式,常见网络结构主要可以分为下面3类:

(1) 前馈神经网络 ( Feedforward Neural Networks )

       前馈网络也称前向网络。这种网络只在训练过程会有反馈信号,而在分类过程中数据只能向前传送,直到到达输出层,层间没有向后的反馈信号,因此被称为前馈网络。感知机( perceptron)与BP神经网络就属于前馈网络。

       图4 中是一个3层的前馈神经网络,其中第一层是输入单元,第二层称为隐含层,第三层称为输出层(输入单元不是神经元,因此图中有2层神经元)。

图4. 前馈神经网络

 

  对于一个3层的前馈神经网络N,若用X表示网络的输入向量,W1~W3表示网络各层的连接权向量,F1~F3表示神经网络3层的激活函数。

  那么神经网络的第一层神经元的输出为:

O1 = F1( XW1 )

  第二层的输出为:

O2 = F2 ( F1( XW1 ) W2 )

  输出层的输出为:

O3 = F3( F2 ( F1( XW1 ) W2 ) W3 )

       若激活函数F1~F3都选用线性函数,那么神经网络的输出O3将是输入X的线性函数。因此,若要做高次函数的逼近就应该选用适当的非线性函数作为激活函数。

(2) 反馈神经网络 ( Feedback Neural Networks )

       反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。典型的反馈型神经网络有:Elman网络和Hopfield网络。

图5. 反馈神经网络

 

(3) 自组织网络 ( SOM ,Self-Organizing Neural Networks )

       自组织神经网络是一种无导师学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。

图6. 自组织网络

 

4. 神经网络工作方式 

       神经网络运作过程分为学习和工作两种状态。

(1)神经网络的学习状态 

       网络的学习主要是指使用学习算法来调整神经元间的联接权,使得网络输出更符合实际。学习算法分为有导师学习( Supervised Learning )无导师学习( Unsupervised Learning )两类。

       有导师学习算法将一组训练集 ( training set )送入网络,根据网络的实际输出与期望输出间的差别来调整连接权。有导师学习算法的主要步骤包括:

1)  从样本集合中取一个样本(Ai,Bi);

2)  计算网络的实际输出O;

3)  求D=Bi-O;

4)  根据D调整权矩阵W;

5) 对每个样本重复上述过程,直到对整个样本集来说,误差不超过规定范围。

  BP算法就是一种出色的有导师学习算法。

       无导师学习抽取样本集合中蕴含的统计特性,并以神经元之间的联接权的形式存于网络中。

       Hebb学习律是一种经典的无导师学习算法。

(2) 神经网络的工作状态 

       神经元间的连接权不变,神经网络作为分类器、预测器等使用。

  下面简要介绍一下Hebb学习率与Delta学习规则 。

(3) 无导师学习算法:Hebb学习率 

  Hebb算法核心思想是,当两个神经元同时处于激发状态时两者间的连接权会被加强,否则被减弱。 

       为了理解Hebb算法,有必要简单介绍一下条件反射实验。巴甫洛夫的条件反射实验:每次给狗喂食前都先响铃,时间一长,狗就会将铃声和食物联系起来。以后如果响铃但是不给食物,狗也会流口水。

图7. 巴甫洛夫的条件反射实验

 

  受该实验的启发,Hebb的理论认为在同一时间被激发的神经元间的联系会被强化。比如,铃声响时一个神经元被激发,在同一时间食物的出现会激发附近的另一个神经元,那么这两个神经元间的联系就会强化,从而记住这两个事物之间存在着联系。相反,如果两个神经元总是不能同步激发,那么它们间的联系将会越来越弱。

  Hebb学习律可表示为:

       其中wij表示神经元j到神经元i的连接权,yi与yj为两个神经元的输出,a是表示学习速度的常数。若yi与yj同时被激活,即yi与yj同时为正,那么Wij将增大。若yi被激活,而yj处于抑制状态,即yi为正yj为负,那么Wij将变小。

(4) 有导师学习算法:Delta学习规则

  Delta学习规则是一种简单的有导师学习算法,该算法根据神经元的实际输出与期望输出差别来调整连接权,其数学表示如下:

 

       其中Wij表示神经元j到神经元i的连接权,di是神经元i的期望输出,yi是神经元i的实际输出,xj表示神经元j状态,若神经元j处于激活态则xj为1,若处于抑制状态则xj为0或-1(根据激活函数而定)。a是表示学习速度的常数。假设xi为1,若di比yi大,那么Wij将增大,若di比yi小,那么Wij将变小。

       Delta规则简单讲来就是:若神经元实际输出比期望输出大,则减小所有输入为正的连接的权重,增大所有输入为负的连接的权重。反之,若神经元实际输出比期望输出小,则增大所有输入为正的连接的权重,减小所有输入为负的连接的权重。这个增大或减小的幅度就根据上面的式子来计算。

(5)有导师学习算法:BP算法 

  采用BP学习算法的前馈型神经网络通常被称为BP网络。

图8. 三层BP神经网络结构

 

  BP网络具有很强的非线性映射能力,一个3层BP神经网络能够实现对任意非线性函数进行逼近(根据Kolrnogorov定理)。一个典型的3层BP神经网络模型如图7所示。

  BP网络的学习算法占篇幅较大,我打算在下一篇文章中介绍。

 

第二节、神经网络实现 

 

1. 数据预处理 

       在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。

(1) 什么是归一化? 

数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。

(2) 为什么要归一化处理? 

<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。

<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。

<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。

<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。

(3) 归一化算法 

  一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式:

       <1>

y = ( x - min )/( max - min )

  其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到 [ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。

       <2>

y = 2 * ( x - min ) / ( max - min ) - 1

       这条公式将数据归一化到 [ -1 , 1 ] 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。

(4) Matlab数据归一化处理函数 

  Matlab中归一化处理数据可以采用premnmx , postmnmx , tramnmx 这3个函数。

<1> premnmx

语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)

参数:

pn: p矩阵按行归一化后的矩阵

minp,maxp:p矩阵每一行的最小值,最大值

tn:t矩阵按行归一化后的矩阵

mint,maxt:t矩阵每一行的最小值,最大值

作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。

<2> tramnmx

语法:[pn] = tramnmx(p,minp,maxp)

参数:

minp,maxp:premnmx函数计算的矩阵的最小,最大值

pn:归一化后的矩阵

作用:主要用于归一化处理待分类的输入数据。

<3> postmnmx

语法: [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)

参数:

minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值

mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值

作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。

2. 使用Matlab实现神经网络 

使用Matlab建立前馈神经网络主要会使用到下面3个函数:

newff :前馈网络创建函数

train:训练一个神经网络

sim :使用网络进行仿真

 下面简要介绍这3个函数的用法。

(1) newff函数

<1>newff函数语法 

       newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。

语法:net = newff ( A, B, {C} ,‘trainFun’)

参数:

A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;

B:一个k维行向量,其元素为网络中各层节点数;

C:一个k维字符串行向量,每一分量为对应层神经元的激活函数

trainFun :为学习规则采用的训练算法

<2>常用的激活函数

  常用的激活函数有:

  a) 线性函数 (Linear transfer function)

f(x) = x

  该函数的字符串为’purelin’。

 

b) 对数S形转移函数( Logarithmic sigmoid transfer function )

    该函数的字符串为’logsig’。

c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function )

  也就是上面所提到的双极S形函数。

 

  该函数的字符串为’ tansig’。

  Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。

<3>常见的训练函数

    常见的训练函数有:

traingd :梯度下降BP训练函数(Gradient descent backpropagation)

traingdx :梯度下降自适应学习率训练函数

<4>网络配置参数

一些重要的网络配置参数如下:

net.trainparam.goal  :神经网络训练的目标误差

net.trainparam.show   : 显示中间结果的周期

net.trainparam.epochs  :最大迭代次数

net.trainParam.lr    : 学习率

(2) train函数

    网络训练学习函数。

语法:[ net, tr, Y1, E ]  = train( net, X, Y )

参数:

X:网络实际输入

Y:网络应有输出

tr:训练跟踪信息

Y1:网络实际输出

E:误差矩阵

(3) sim函数

语法:Y=sim(net,X)

参数:

net:网络

X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数

Y:输出矩阵Q×N,其中Q为网络输出个数

(4) Matlab BP网络实例 

       我将Iris数据集分为2组,每组各75个样本,每组中每种花各有25个样本。其中一组作为以上程序的训练样本,另外一组作为检验样本。为了方便训练,将3类花分别编号为1,2,3 。

  使用这些数据训练一个4输入(分别对应4个特征),3输出(分别对应该样本属于某一品种的可能性大小)的前向网络。

       Matlab程序如下:

复制代码
%读取训练数据
[f1,f2,f3,f4,class]
= textread('trainData.txt' , '%f%f%f%f%f',150);

%特征值归一化
[input,minI,maxI]
= premnmx( [f1 , f2 , f3 , f4 ]') ;

%构造输出矩阵
s
= length( class) ;
output
= zeros( s , 3 ) ;
for i =1 : s
output( i , class( i ) )
=1 ;
end

%创建神经网络
net
= newff( minmax(input) , [103] , { 'logsig''purelin' } , 'traingdx' ) ;

%设置训练参数
net.trainparam.show
=50 ;
net.trainparam.epochs
=500 ;
net.trainparam.goal
=0.01 ;
net.trainParam.lr
=0.01 ;

%开始训练
net
= train( net, input , output' ) ;

%读取测试数据
[t1 t2 t3 t4 c]
= textread('testData.txt' , '%f%f%f%f%f',150);

%测试数据归一化
testInput
= tramnmx ( [t1,t2,t3,t4]' , minI, maxI ) ;

%仿真
Y
= sim( net , testInput )

%统计识别正确率
[s1 , s2]
= size( Y ) ;
hitNum
= 0 ;
for i =1 : s2
[m , Index]
= max( Y( : , i ) ) ;
if( Index == c(i) )
hitNum
= hitNum +1 ;
end
end
sprintf(
'识别率是 %3.3f%%',100* hitNum / s2 )
复制代码

 

  以上程序的识别率稳定在95%左右,训练100次左右达到收敛,训练曲线如下图所示:

图9. 训练性能表现

 

(5)参数设置对神经网络性能的影响 

       我在实验中通过调整隐含层节点数,选择不通过的激活函数,设定不同的学习率,

 

<1>隐含层节点个数 

  隐含层节点的个数对于识别率的影响并不大,但是节点个数过多会增加运算量,使得训练较慢。

 

<2>激活函数的选择 

       激活函数无论对于识别率或收敛速度都有显著的影响。在逼近高次曲线时,S形函数精度比线性函数要高得多,但计算量也要大得多。

 

<3>学习率的选择 

       学习率影响着网络收敛的速度,以及网络能否收敛。学习率设置偏小可以保证网络收敛,但是收敛较慢。相反,学习率设置偏大则有可能使网络训练不收敛,影响识别效果。

 

3. 使用AForge.NET实现神经网络 

(1) AForge.NET简介 

       AForge.NET是一个C#实现的面向人工智能、计算机视觉等领域的开源架构。AForge.NET源代码下的Neuro目录包含一个神经网络的类库。

AForge.NET主页:http://www.aforgenet.com/

AForge.NET代码下载:http://code.google.com/p/aforge/

Aforge.Neuro工程的类图如下:

 

图10. AForge.Neuro类库类图

 

下面介绍图9中的几个基本的类:

Neuron — 神经元的抽象基类

Layer — 层的抽象基类,由多个神经元组成

Network —神经网络的抽象基类,由多个层(Layer)组成

IActivationFunction - 激活函数(activation function)的接口

IUnsupervisedLearning - 无导师学习(unsupervised learning)算法的接口ISupervisedLearning - 有导师学习(supervised learning)算法的接口

 

(2)使用Aforge建立BP神经网络 

       使用AForge建立BP神经网络会用到下面的几个类:

<1>  SigmoidFunction : S形神经网络

  构造函数:public SigmoidFunction( double alpha )

   参数alpha决定S形函数的陡峭程度。

<2>  ActivationNetwork :神经网络类

  构造函数:

  public ActivationNetwork( IActivationFunction function, int inputsCount, params int[] neuronsCount )

                         : base( inputsCount, neuronsCount.Length )

  public virtual double[] Compute( double[] input )

 

参数意义:

inputsCount:输入个数

neuronsCount :表示各层神经元个数

<3>  BackPropagationLearning:BP学习算法

 构造函数:

public BackPropagationLearning( ActivationNetwork network )

 参数意义:

network :要训练的神经网络对象

BackPropagationLearning类需要用户设置的属性有下面2个:

learningRate :学习率

momentum :冲量因子

下面给出一个用AForge构建BP网络的代码。

 

复制代码
// 创建一个多层神经网络,采用S形激活函数,各层分别有4,5,3个神经元
//(其中4是输入个数,3是输出个数,5是中间层结点个数)
ActivationNetwork network =new ActivationNetwork(
new SigmoidFunction(2), 4, 5, 3);

// 创建训练算法对象
BackPropagationLearning teacher =new
BackPropagationLearning(network);

// 设置BP算法的学习率与冲量系数
teacher.LearningRate =0.1;
teacher.Momentum
=0;

int iteration =1 ;

// 迭代训练500次
while( iteration <500 )
{
teacher.RunEpoch( trainInput , trainOutput ) ;
++iteration ;
}

//使用训练出来的神经网络来分类,t为输入数据向量
network.Compute(t)[0]
复制代码

 

       改程序对Iris 数据进行分类,识别率可达97%左右 。

 

     点击下载源代码

 

  文章来自:http://www.cnblogs.com/heaad/  

 

 

参考文献 

[1] Andrew Kirillov. Neural Networks on C#. [Online].   

http://www.codeproject.com/KB/recipes/aforge_neuro.aspx  2006.10

[2] Sacha Barber. AI : Neural Network for beginners. [Online].

http://www.codeproject.com/KB/recipes/NeuralNetwork_1.aspx  2007.5

[3] Richard O. Duda, Peter E. Hart and David G. Stork. 模式分类. 机械工业出版社. 2010.4

[4] Wikipedia. Iris flower data set. [Online].      

http://en.wikipedia.org/wiki/Iris_flower_data_set 

转载于:https://www.cnblogs.com/94julia/archive/2013/04/26/3044578.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/461137.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软考复习之路—组成原理

计算机系统的基础知识应该是作为一个编程人员必备的一门课程&#xff0c;仅仅有了解了计算机的组成&#xff0c;程序在计算 机中的存储状态&#xff0c;运算等基本内容&#xff0c;我们才干继续对计算机有更深层次的认识&#xff0c;更easy学习与上手。比方说要 想学习操作系统…

python内存管理机制错误_Python内存管理机制和垃圾回收机制的简单理解

一、内存管理机制1.由c开发出来的cpython2.include / objests3.需要下载python源码包4.Pyobject&#xff1a;floatPyVarObject&#xff1a;5.在python中所有东西创建对象的时候&#xff0c;内部都会存储一个数据// 维护双向链表struct _object *_ob_next;struct _object *_ob_p…

求背包问题所有解(C++实现)

这是我学习数据结构时的一道上机作业&#xff0c;那时还没养成写注释的习惯&#xff0c;所以各位得受点苦了。 只是简易背包问题。 代码&#xff1a; 展开 1 // 背包问题所有解2 // 作者:王锦 3 // 邮箱:jinkswvip.qq.com4 5 #include "stdafx.h"6 #include <iost…

JAVA--自制斐波那契数列输出

累了&#xff0c;写点简单的。 1 public class hello {2 3 /**4 * param args5 */6 public static void main(String[] args) {7 int Fabnum 10;8 int sum 0;9 System.out.print("Serial:\t"); 10 for(int i 1…

9、C语言 —— 指针的用处

为什么80%的码农都做不了架构师&#xff1f;>>> 1、用函数实现两个数的交换 ‍‍在没用函数之前&#xff0c;可以这样实现‍‍#include <stdio.h>int main() {int a 3;int b 7;int c;printf("交换前&#xff0c;a%d&#xff0c;b%d\n", a, b); …

java动态代理二cglib

2019独角兽企业重金招聘Python工程师标准>>> java动态代理 转载于:https://my.oschina.net/u/1430510/blog/290215

中断的上下半部

以下内容源于朱有鹏嵌入式课程的学习与整理&#xff0c;如有侵权请告知删除。 前言 因为输入类设备的输入都是异步事件&#xff0c;因此一般使用中断来处理和响应。 中断处理程序处于中断上下文中&#xff0c;不能和用户空间数据交互&#xff08;不能使用copy_to(from)_usr函数…

图片播放器小项目(详解)

以下内容源于朱有鹏《物联网大讲堂》课程的学习整理&#xff0c;如有侵权&#xff0c;请告知删除。一、开始动手写代码 1、Makefile介绍 &#xff08;1&#xff09;这是一个通用的项目管理的Makefile体系&#xff0c;自己写的&#xff08;有子文件夹组织的&#xff09;项目可以…

Telnet远程访问思科交换机、路由器

一、实验目的Telnet远程访问思科交换机、路由器二、实验拓扑三、实验步骤1、PC1远程管理S11&#xff09;配置交换机的管理IPS1(config)#int vlan 1S1(config-if)#ip add 192.168.1.100 255.255.255.0S1(config-if)#no shu2&#xff09;开启S1的telnet远程管理服务S1(config)#li…

[置顶]       cocos2d-x 手游源码站

尊重开发者的劳动成果&#xff0c;转载的时候请务必注明出处&#xff1a;http://blog.csdn.net/haomengzhu/article/details/37829061 1、魔幻方块 链接&#xff1a;魔幻方块源码关键词&#xff1a;魔幻方块源码 源代码 Cocos2d-x2.0 游戏源码 益智 休闲 游戏 游戏类型&#xf…

Android SDK开发包国内下载地址

原帖地址&#xff1a;http://www.cnblogs.com/bjzhanghao/archive/2012/11/14/2769409.html 不知道是因为最近kaihui还是怎么的&#xff0c;打开android sdk官方网站特别的慢&#xff0c;想下载最新版本的platform几乎变成不可能完成的任务&#xff0c;不知道为什么Google不像…

SharePoint 2013 Workflow - Advanced Workflow Debugging with Fiddler

来自&#xff1a;Andrew Connell [MVP SharePoint] | 时间&#xff1a;2012-07-18 19:26:30 原文链接&#xff1a; http://www.andrewconnell.com/blog/archive/2012/07/18/sharepoint-2013-workflow-advanced-workflow-debugging-with-fiddler.aspx In previous posts Iv…

java sheet 打印区域设定,如何使用Java设置电子表格的打印区域。(How to set the print area of a spreadsheet using Java.)...

如何使用Java设置电子表格的打印区域。(How to set the print area of a spreadsheet using Java.)问题描述 (Problem Description)如何使用Java设置电子表格的打印区域。解决方案 (Solution)以下是使用Java设置电子表格打印区域的程序。import java.io.File;import java.io.Fi…

RedHat6.2 x86手动配置LNMP环境

为什么80%的码农都做不了架构师&#xff1f;>>> 因为公司要求用RedHat配&#xff0c;顺便让我练习一下Linux里面的操作什么的。 折腾来折腾去终于搞好了&#xff0c;其实也没那么难嘛。但是也要记录一下。 首先&#xff0c;是在服务器里面用VMware搭建的RedHat6.2 …

《c语言深度剖析》读书笔记

一、注意点 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 二、问题 1、 2、 3、 4、 5、 6、 7、

androidpn的一次亲密接触(二)

简单看了一下源码的实现&#xff0c;这里贴一点个人觉得比叫重要的代码。 XmppManager.java 构造方法&#xff1a;Java代码public XmppManager(NotificationService notificationService) 在这里主要是从共享引用中取得xmpp服务器地址和端口号、用户名和密码。 内部类Java代码…

指针知识学习[总]

printf("p %p.\n", p); // %p打印指针和%x打印指针&#xff0c;打印出的值是一样的 printf("p 0x%x.\n", p); 一、指针是什么&#xff1f; 1、指针变量和普通变量的区别 指针的实质就是个变量&#xff0c;它跟普通变量没有任何本质区别。指针完整的名字…

php excel 分页,excel分页线怎么增加

增加excel分页线的方法&#xff1a;首先依次点击“工作簿视图-分页预览”&#xff1b;然后点击要在其下方插入分页符的这一行&#xff1b;最后在“页面布局”选项卡上的“页面设置”组中&#xff0c;单击“分隔符”即可。本文操作环境&#xff1a;Windows7系统&#xff0c;Micr…

C# 中的委托和事件

PDF 浏览&#xff1a;http://www.tracefact.net/Document/Delegates-and-Events-in-CSharp.pdf文中代码在VS2005下通过&#xff0c;由于VS2003(.Net Framework 1.1)不支持隐式的委托变量&#xff0c;所以如果在一个接受委托类型的位置直接赋予方法名&#xff0c;在VS2003下会报…

php7 有ext skel吗,PHP扩展开发系列02 - 老司机起步之函数

上一篇扩展开发引导文章中。创建了编写扩展的三个基本文件。或许你会有个疑问PHP没有类似的自动生成项目框架的工具吗&#xff1f; 当然有。这篇文章就开始介绍使用 "php-ext-cli" 工具来生成扩展项目文件注意这里的 "php-ext-cli" 本身没有这玩意&#xf…