世界坐标系和相机坐标系,图像坐标系的关系

from:https://blog.csdn.net/waeceo/article/details/50580607

一、四个坐标系简介和转换

相机模型为以后一切标定算法的关键,只有这边有相当透彻的理解,对以后的标定算法才能有更好的理解。本人研究了好长时间,几乎每天都重复看几遍,最终才会明白其推导过程。
     我觉得首先我们要理解相机模型中的四个平面坐标系的关系:像素平面坐标系(u,v)、像平面坐标系(图像物理坐标第(x,y)、相机坐标系(Xc,Yc,Zc)和世界坐标系(Xw,Yw,Zw),在每一篇介绍相机模型的文章中都有介绍。
     我刚开始理解时,看着那一堆的公式十分的头晕,我相信很多初学者和我一样,但仔细想想,只不过是,我们假设了一些参数,使四个坐标系之间的坐标联系起来,这样我们就可以从拍摄的图片上一个点坐标一路反推出世界中的那个点的坐标,这样就达到了我们的目的,三维重建。而那些我们假设的参数,就是我们要标定的内外参数。


1、“像素坐标” 与 “像平面坐标系” 之间的关系 


      确定他们的关系之前,我们可以假设每一个像素在u轴和v轴方向上的物理尺寸为dx和dy。仔细看下他们的模型可以推出以下公式(这个还是比较好理解的):




解释:1、dx,dy,u0,v0其实都是我们假设出来的参数,dx、dy表示感光芯片上像素的实际大小,是连接像素坐标系和真实尺寸坐标系的,u0,v0是图像平面中心,最终是要我们求的内外参数。
得出这个公式后我们可以运用线性代数的知识把方程用矩阵形式表示:

当然我们也可以用另一种矩阵形式表示:


2、“相机坐标系” 与 “世界坐标系”之间的关系 

     这两个坐标系之间的关系我们可以旋转矩阵R平移矩阵T来得到以下关系:


                                       

                                                                    公式4

   解释:1、 在这个公式中,R为3*3矩阵,T为3*1,0为(0,0,0),简化用Lw表示后为4*4矩阵。


3、成像投影关系(“相机坐标系” 与 “像平面坐标系”) 


     在相机模型中我们可以得到以下公式:


                                       

                                                                 公式5

           解释:1、

同样我们用矩阵形式表示:

                                          

                                                                       公式6


4、得到公式


而我们可以将以上公式综合一下就可以得到:

  

因此,内参数矩阵可以表示为:

=


外参矩阵可以表示为:,由旋转矩阵R和平移向量T组成


当然在好多资料上都有这种做法:



上图中表示的情况是像素坐标系和图像物理坐标系的两个坐标轴不是平行的关系,像素坐标系的两个坐标轴也不是垂直90°的关系,而图像物理坐标系的两个坐标轴是垂直关系。所以,我们在转换两个坐标轴的坐标之间的关系时就必须考虑像素坐标系两个坐标轴之间的夹角了。就有了上面的不同的内参矩阵,理解了就好了。


二、图像坐标:我想和世界坐标谈谈(B)

         玉米将在这篇博文中,对图像坐标与世界坐标的这场对话中涉及的第二个问题:谈话方式,进行总结。世界坐标是怎样变换进摄像机,投影成图像坐标的呢?

        玉米做了一个简单的图示,在这里做一个提纲。图中显示,世界坐标系通过刚体变换到达摄像机坐标系,然后摄像机坐标系通过透视投影变换到达图像坐标系。可以看出,世界坐标与图像坐标的关系建立在刚体变换和透视投影变换的基础上。为了奖励刚体变和透视投影变换沟通了“世界上最远的距离”,玉米在图上奖励了他们两朵小红花。哈哈


 首先,让我们来看一下刚体变换是如何将世界坐标系与图像坐标系联系起来的吧。这里,先对刚体变换做一个介绍:

        刚体变换(regidbody motion):三维空间中, 当物体不发生形变时,对一个几何物体作旋转, 平移的运动,称之为刚体变换。

因为世界坐标系和摄像机坐标都是右手坐标系,所以其不会发生形变。我们想把世界坐标系下的坐标转换到摄像机坐标下的坐标,如下图所示,可以通过刚体变换的方式。空间中一个坐标系,总可以通过刚体变换转换到另外一个个坐标系的。转一转,走一走,就到另外一个坐标系下了。以前可能是面朝大海,经过平移旋转,最终可能只能面朝冰山了,哈哈


下面让我来看一下,二者之间刚体变化的数学表达。


其中,XC代表摄像机坐标系,X代表世界坐标系。R代表旋转,T代表平移。R、T与摄像机无关,所以称这两个参数为摄像机的外参数(extrinsic parameter)可以理解为两个坐标原点之间的距离,因其受x,y,z三个方向上的分量共同控制,所以其具有三个自由度。

         R则为分别绕XYZ三轴旋转的效果之和。如下面所示:


 R=r1*r2*r3.其由三个方向的θ控制,故具有三个自由度。

           好了,刚体变换就讲完了。大家应该都了解,世界坐标系到摄像机坐标系之间的转换过程了吧。

          接下来,让我们看看摄像机坐标下的坐标如何投影到图像坐标系下,最终变为照片中的一个像素。这其中包含两个过程:一是从摄像机坐标到“空间图像坐标”(x,y)所发生的透视投影;二是从“连续图像坐标”到“离散图像坐标”(u,v)。后者我们已经在第一篇博文中解释过。所以在这里,主要介绍一下透视投影。

         透视投影(perspective projection): 用中心投影法将形体投射到投影面上,从而获得的一种较为接近视觉效果的单面投影图。有一点像皮影戏。它符合人们心理习惯,即离视点近的物体大,离视点远的物体小,不平行于成像平面的平行线会相交于消隐点(vanish point)。

         啰嗦这么多,其实大家看看示意图,看看公式,秒懂。


  以图中B(XB,YB)点为例,在小孔成像摄像机模型下(几何分析的最常用模型)。这里的f为摄像机的焦距,其属于摄像机的内参数(intrinsic parameter)。其在成像平面上的投影点b(xb,yb)的坐标利用简单的相似三角形比例关系很容易求出:


上面两式也阐明了摄像机坐标与图像坐标之间的透视投影关系。

            好吧,现在玉米已经把图像坐标与世界坐标之间的这场对话所需经历的三个波折的过程加以了解释。即:刚体变换、透视投影、(x,y)换(u,v)(ps.这个在上一篇博文中讲过)。接下来玉米用一张图把三个过程连接起来。实现从世界坐标(X,Y,Z)到(u,v)之间的转换。让图像坐标与世界坐标直接对话。

         下图中的转换关系,都是用齐次坐标表达的,大家会发现这样的表达非常整洁。

         其实这张图显示的过程还有一个名字:摄像机模型(camera model)。其实也就是摄像机的几何模型了。

         将三者相乘,可以把这三个过程和在一起,写成一个矩阵:


P就是世界坐标到图像坐标的直接联系人,P就表示了一个投影相机,有下面公式:


注意在表示齐次坐标时,需要在符号上面加个小帽子。除去齐次坐标控制位P23P具有11个自由度。


       摄像机模型及其中涉及的坐标系等,是弄清3D重建几何框架的基础。可以把它们视为基本运算关系。后面对于三维重建几何框架的推导,都是要用到三个基本坐标系和摄像机模型的。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/458263.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PythonOCC 3D图形库学习—创建立方体模型

Open CASCADE(简称OCC)平台是是一个开源的C类库,OCC主要用于开发二维和三维几何建模应用程序,包括通用的或专业的计算机辅助设计CAD系统、制造或分析领域的应用程序、仿真应用程序或图形演示工具。 PythonOCC是对Open CASCADE的封…

Struts2、SpringMVC、Servlet(Jsp)性能对比 测试 。 Servlet的性能应该是最好的,可以做为参考基准,其它测试都要向它看齐,参照...

2019独角兽企业重金招聘Python工程师标准>>> Struts2、SpringMVC、Servlet(Jsp)性能对比 测试 。 Servlet的性能应该是最好的,可以做为参考基准,其它测试都要向它看齐,参照它。 做为一个程序员,对于各个框架的性能要有…

基于图像分割的立体匹配方法

1.绪论 立体匹配是三维重建系统的关键步骤,并且作为一种非接触测量方法在工业以及科研领域具有重要的应用价值。为了完成匹配工作以及获取场景的稠密视差图,可以通过构建能量函数对应立体匹配的约束条件。复杂能量函数的全局最优解通常是NP难问题。相对于…

深度相机(二)--结构光深度测距

原文: http://blog.sina.com.cn/s/blog_80ce3a550100wg5j.html http://blog.csdn.net/u013360881/article/details/51395427 网上资源:http://eia.udg.es/~qsalvi/recerca.html 结构光编码: 在3D 的深度获取上,最为常见的方法是类…

用python实现模拟登录人人网

用python实现模拟登录人人网 字数4068 阅读1762 评论19 喜欢46我决定从头说起。懂的人可以快速略过前面理论看最后几张图。 web基础知识 从OSI参考模型(从低到高:物理层,数据链路层,网络层,传输层,会话层&a…

双目相机--双目视差与深度距离关系推导详解

相机成像的模型如下图所示: P为空间中的点,P1和P2是点P在左右像平面上的成像点,f是焦距,OR和OT是左右相机的光心。由下图可见左右两个相机的光轴是平行的。XR和XT是两个成像点在左右两个像面上距离图像左边缘的距离。 -----------…

SQL Server有这些属性吗

2019独角兽企业重金招聘Python工程师标准>>> Navicat for SQL Server是一个全面的图形化方式管理数据库,可进行创建、编辑和删除全部数据库对象,例如表、视图、函数、索引和触发器,或运行SQL查询和脚本,查看或编辑BLOB…

【立体视觉】双目立体标定与立体校正

from:https://blog.csdn.net/u011574296/article/details/73826420 参考: 机器视觉学习笔记(6)——双目摄像机标定参数说明 机器视觉学习笔记(8)——基于OpenCV的Bouguet立体校正 双摄像头立体成像(三)-畸变…

bootstrap .col-md-6 文字居中问题处理

转载于:https://www.cnblogs.com/benbenfishfish/p/5672520.html

机器视觉学习笔记(4)——单目摄像机标定参数说明

from:https://blog.csdn.net/xuelabizp/article/details/50314633机器视觉学习笔记(4)——单目摄像机标定参数说明 标签: 机器视觉1.针孔摄像机模型 在介绍摄像机标定参数之前,需要先简单说一下针孔摄像机的原理。投影…

mysql 5.6 binlog组提交

mysql 5.6 binlog组提交实现原理http://blog.itpub.net/15480802/viewspace-1411356 Redo组提交 Redo提交流程大致如下 lock log->mutex write redo log buffer to disk unlock log->mutex fsync Fsync写磁盘耗时较长且不占用log->mutex,也就是其执行期间其…

张正友相机标定Opencv实现以及标定流程标定结果评价图像矫正流程解析(附标定程序和棋盘图)

from:https://blog.csdn.net/dcrmg/article/details/52939318使用Opencv实现张正友法相机标定之前,有几个问题事先要确认一下,那就是相机为什么需要标定,标定需要的输入和输出分别是哪些?相机标定的目的:获…

opencv双目视觉标定、匹配和测量 (附代码)

from:https://blog.csdn.net/bcj296050240/article/details/52778741双目视觉原理方面参照《学习Opencv》和大牛博客 http://blog.csdn.net/chenyusiyuan/article/details/5970799中16-19系列博客。本文主要记录我自己在双目视觉标定,立体匹配&#xff0…

工业相机的选择方法

信号  工业相机的信号类型有模拟信号和数字信号两种。模拟相机必须有图像采集卡,标准的模拟相机分辨率很低,采集到的是模拟信号,经数字采集卡转换为数字信号进行传输存储。工业数字相机采集到的是数字信号,数字信号不受电噪声影…

socket编程初级

什么是socket定义socket通常也称作套接字,用于描述IP地址和端口,是一个通信链的句柄,应用程序通常通过套接字向网络发出请求或者应答网络请求。socket起源于Unix,而Unix/Linux基本哲学之一就是“一切皆文件”,对于文件…

OpenCV—基本数据结构与示例

OpenCV的基本数据结构及示例OpenCV中强大的Mat类型大家已经比较熟悉了。这里梳理一些在工程中其他经常用到的几种基本数据类型。包括:VecScalarPointSizeRectRotatedRect1. Vec类1.1 基本概念Vec是一个模板类,主要用于存储数值向量。1.2 用法&#xff08…

转载-程序员编程技术迅速提高的终极攻略

2019独角兽企业重金招聘Python工程师标准>>> 前言 你是否觉得自己从学校毕业的时候只做过小玩具一样的程序?走入职场后哪怕没有什么经验也可以把以下这些课外练习走一遍(朋友的抱怨:学校课程总是从理论出发,作业项目都…

SVM

from:https://blog.csdn.net/liugan528/article/details/79448379 SVM 1. 基本概念 支持向量机(Support Vector Machine, SVM)的基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大。SVM是用来解决二分类问题的有监督学…

LoadRunner常用术语

1.场景 2.负载发生器 3.虚拟用户 4.虚拟用户脚本 5.事务 6.思考时间 7.集合点 8.事务响应时间 转载于:https://www.cnblogs.com/Andy-Lv/p/5263707.html

跟我学Shiro目录贴

2019独角兽企业重金招聘Python工程师标准>>> http://jinnianshilongnian.iteye.com/blog/2018398 转载于:https://my.oschina.net/zhanggongming/blog/714844