使用pytorch 的Transformer进行中英文翻译训练

下面是一个使用torch.nn.Transformer进行序列到序列(Sequence-to-Sequence)的机器翻译任务的示例代码,包括数据加载、模型搭建和训练过程。

import torch
import torch.nn as nn
from torch.nn import Transformer
from torch.utils.data import DataLoader
from torch.optim import Adam
from torch.nn.utils import clip_grad_norm_# 数据加载
def load_data():# 加载源语言数据和目标语言数据# 在这里你可以根据实际情况进行数据加载和预处理src_sentences = [...]  # 源语言句子列表tgt_sentences = [...]  # 目标语言句子列表return src_sentences, tgt_sentencesdef preprocess_data(src_sentences, tgt_sentences):# 在这里你可以进行数据预处理,如分词、建立词汇表等# 为了简化示例,这里直接返回原始数据return src_sentences, tgt_sentencesdef create_vocab(sentences):# 建立词汇表,并为每个词分配一个唯一的索引# 这里可以使用一些现有的库,如torchtext等来处理词汇表的构建word2idx = {}idx2word = {}for sentence in sentences:for word in sentence:if word not in word2idx:index = len(word2idx)word2idx[word] = indexidx2word[index] = wordreturn word2idx, idx2worddef sentence_to_tensor(sentence, word2idx):# 将句子转换为张量形式,张量的每个元素表示词语在词汇表中的索引tensor = [word2idx[word] for word in sentence]return torch.tensor(tensor)def collate_fn(batch):# 对批次数据进行填充,使每个句子长度相同max_length = max(len(sentence) for sentence in batch)padded_batch = []for sentence in batch:padded_sentence = sentence + [0] * (max_length - len(sentence))padded_batch.append(padded_sentence)return torch.tensor(padded_batch)# 模型定义
class TranslationModel(nn.Module):def __init__(self, src_vocab_size, tgt_vocab_size, embedding_size, hidden_size, num_layers, num_heads, dropout):super(TranslationModel, self).__init__()self.embedding = nn.Embedding(src_vocab_size, embedding_size)self.transformer = Transformer(d_model=embedding_size,nhead=num_heads,num_encoder_layers=num_layers,num_decoder_layers=num_layers,dim_feedforward=hidden_size,dropout=dropout)self.fc = nn.Linear(embedding_size, tgt_vocab_size)def forward(self, src_sequence, tgt_sequence):embedded_src = self.embedding(src_sequence)embedded_tgt = self.embedding(tgt_sequence)output = self.transformer(embedded_src, embedded_tgt)output = self.fc(output)return output# 参数设置
src_vocab_size = 1000
tgt_vocab_size = 2000
embedding_size = 256
hidden_size = 512
num_layers = 4
num_heads = 8
dropout = 0.2
learning_rate = 0.001
batch_size = 32
num_epochs = 10# 加载和预处理数据
src_sentences, tgt_sentences = load_data()
src_sentences, tgt_sentences = preprocess_data(src_sentences, tgt_sentences)
src_word2idx, src_idx2word = create_vocab(src_sentences)
tgt_word2idx, tgt_idx2word = create_vocab(tgt_sentences)# 将句子转换为张量形式
src_tensor = [sentence_to_tensor(sentence, src_word2idx) for sentence in src_sentences]
tgt_tensor = [sentence_to_tensor(sentence, tgt_word2idx) for sentence in tgt_sentences]# 创建数据加载器
dataset = list(zip(src_tensor, tgt_tensor))
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)# 创建模型实例
model = TranslationModel(src_vocab_size, tgt_vocab_size, embedding_size, hidden_size, num_layers, num_heads, dropout)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = Adam(model.parameters(), lr=learning_rate)# 训练模型
for epoch in range(num_epochs):total_loss = 0.0num_batches = 0for batch in dataloader:src_inputs, tgt_inputs = batch[:, :-1], batch[:, 1:]optimizer.zero_grad()output = model(src_inputs, tgt_inputs)loss = criterion(output.view(-1, tgt_vocab_size), tgt_inputs.view(-1))loss.backward()clip_grad_norm_(model.parameters(), max_norm=1)  # 防止梯度爆炸optimizer.step()total_loss += loss.item()num_batches += 1average_loss = total_loss / num_batchesprint(f"Epoch {epoch + 1}/{num_epochs}, Loss: {average_loss}")# 在训练完成后,可以使用模型进行推理和翻译

上述代码是一个基本的序列到序列机器翻译任务的示例,其中使用torch.nn.Transformer作为模型架构。首先,我们加载数据并进行预处理,然后为源语言和目标语言建立词汇表。接下来,我们创建一个自定义的TranslationModel类,该类使用Transformer模型进行翻译。在训练过程中,我们使用交叉熵损失函数和Adam优化器进行模型训练。代码中使用的collate_fn函数确保每个批次的句子长度一致,并对句子进行填充。在每个训练周期中,我们计算损失并进行反向传播和参数更新。最后,打印每个训练周期的平均损失。

请注意,在实际应用中,还需要根据任务需求进行更多的定制和调整。例如,加入位置编码、使用更复杂的编码器或解码器模型等。此示例可以作为使用torch.nn.Transformer进行序列到序列机器翻译任务的起点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/45620.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PyTorch学习笔记(十六)——利用GPU训练

一、方式一 网络模型、损失函数、数据(包括输入、标注) 找到以上三种变量,调用它们的.cuda(),再返回即可 if torch.cuda.is_available():mynn mynn.cuda() if torch.cuda.is_available():loss_function loss_function.cuda(…

SpringMVC之@RequestMapping注解

文章目录 前言一、RequestMapping介绍二、详解(末尾附源码,自行测试)1.RequestMapping注解的位置2.RequestMapping注解的value属性3.RequestMapping注解的method属性4.RequestMapping注解的params属性(了解)5.RequestM…

华为ENSP网络设备配置实战6(简单的链路聚合)

题目要求 1、创建聚合组,添加端口成员 2、PC1网段为vlan10,PC2网段为vlan20 3、LSW1为核心网关设备,正确配置PC网关 4、PC1与PC2互通 解题过程 1.1、 按照拓扑图,各个设备起名 sys (进入系统视图) sy…

写一个mysql 正则表达式,每三个img标签图片后面添加<hr>

你可以使用MySQL的REGEXP_REPLACE函数来实现这个需求。下面是一个示例的正则表达式和SQL语句&#xff1a; sql UPDATE your_table SET your_column REGEXP_REPLACE(your_column, (<img[^>]*>){3}, $0<hr>) WHERE your_column REGEXP (<img[^>]*>){3}…

TCP协议报文结构

TCP是什么 TCP&#xff08;传输控制协议&#xff09;是一种面向连接的、可靠的、全双工的传输协议。它使用头部&#xff08;Header&#xff09;和数据&#xff08;Data&#xff09;来组织数据包&#xff0c;确保数据的可靠传输和按序传递。 TCP协议报文结构 下面详细阐述TCP…

FRP内网穿透,配置本地电脑作为服务器

FRP内网穿透&#xff0c;配置本地电脑作为服务器 下载FRP服务端客户端 参考链接&#xff1a; https://www.it235.com/实用工具/内网穿透/pierce.html https://www.cnblogs.com/007sx/p/17469301.html 由于没有公网ip&#xff0c;所以尝试内网穿透将本地电脑作为服务器&#xff…

Servlet+JDBC实战开发书店项目讲解第11讲:管理员用户权限功能

ServletJDBC实战开发书店项目讲解第11讲&#xff1a;管理员用户权限功能 在这一讲中&#xff0c;我们将详细讲解如何实现书店项目中的管理员用户权限功能。下面是每个步骤的详细说明&#xff1a; 步骤一&#xff1a;创建管理员用户表 首先&#xff0c;我们需要在数据库中创建…

【Mariadb高可用MHA】

目录 一、概述 1.概念 2.组成 3.特点 4.工作原理 二、案例介绍 1.192.168.42.3 2.192.168.42.4 3.192.168.42.5 4.192.168.42.6 三、实际构建MHA 1.ssh免密登录 1.1 所有节点配置hosts 1.2 192.168.42.3 1.3 192.168.42.4 1.4 192.168.42.5 1.5 192.168.42.6 …

(二)结构型模式:7、享元模式(Flyweight Pattern)(C++实例)

目录 1、享元模式&#xff08;Flyweight Pattern&#xff09;含义 2、享元模式的UML图学习 3、享元模式的应用场景 4、享元模式的优缺点 5、C实现享元模式的简单实例 1、享元模式&#xff08;Flyweight Pattern&#xff09;含义 享元模式&#xff08;Flyweight&#xff09…

OpenCV笔记之solvePnP函数和calibrateCamera函数对比

OpenCV笔记之solvePnP函数和calibrateCamera函数对比 文章目录 OpenCV笔记之solvePnP函数和calibrateCamera函数对比1.cv::solvePnP2.cv::solvePnP函数的用途和工作原理3.cv::solvePnP背后的数学方程式4.cv::SOLVEPNP_ITERATIVE、cv::SOLVEPNP_EPNP、cv::SOLVEPNP_P3P5.一个固定…

C++ 自增自减运算符

自增运算符 会把操作数加 1&#xff0c;自减运算符 – 会把操作数减 1。因此&#xff1a; x x1;等同于x;同样的&#xff1a; x x-1;等同于x--;无论是自增运算符还是自减运算符&#xff0c;都可以放在操作数的前面&#xff08;前缀&#xff09;或后面&#xff08;后缀&…

【C++ STL之map,set,pair详解】

目录 一.map映射1.简介2.包含头文件及其初始化3.基本操作4.用迭代器正反遍历5.添加元素的四种方式6.元素的访问7.对比unordered_map&#xff0c;multimap 二.set集合1.简介2.包含头文件及其初始化3.基本操作4.元素的访问5.set&#xff0c;multiset&#xff0c;unordered_set&am…

为什么需要单元测试?

为什么需要单元测试&#xff1f; 从产品角度而言&#xff0c;常规的功能测试、系统测试都是站在产品局部或全局功能进行测试&#xff0c;能够很好地与用户的需要相结合&#xff0c;但是缺乏了对产品研发细节&#xff08;特别是代码细节的理解&#xff09;。 从测试人员角度而言…

Qt应用开发(基础篇)——纯文本编辑窗口 QPlainTextEdit

一、前言 QPlainTextEdit类继承于QAbstractScrollArea&#xff0c;QAbstractScrollArea继承于QFrame&#xff0c;是Qt用来显示和编辑纯文本的窗口。 滚屏区域基类https://blog.csdn.net/u014491932/article/details/132245486?spm1001.2014.3001.5501框架类QFramehttps://blo…

Elasticsearch复合查询之Boosting Query

前言 ES 里面有 5 种复合查询&#xff0c;分别是&#xff1a; Boolean QueryBoosting QueryConstant Score QueryDisjunction Max QueryFunction Score Query Boolean Query在之前已经介绍过了&#xff0c;今天来看一下 Boosting Query 用法&#xff0c;其实也非常简单&…

Chapter 15: Object-Oriented Programming | Python for Everybody 讲义笔记_En

文章目录 Python for Everybody课程简介Object-oriented programmingManaging larger programsGetting startedUsing objectsStarting with programsSubdividing a problemOur first Python objectClasses as typesObject lifecycleMultiple instancesInheritanceSummaryGlossa…

[.NET学习笔记] -.NET6.0项目动态加载netstandard2.0报错但项目添加引用则正常的问题

问题描述 .NET6.0的项目使用netstandard2.0版本的动态链接库。若是在项目中直接添加引用&#xff0c;应用netstandard2.0项目或者netstandard2.0编译后的dll均能正常工作。但如果通过xcopy等方式&#xff0c;额外将对应的dll复制到执行目录&#xff0c;会执行失败。调用方式一…

python基础5——正则、数据库操作

文章目录 一、数据库编程1.1 connect()函数1.2 命令参数1.3 常用语句 二、正则表达式2.1 匹配方式2.2 字符匹配2.3 数量匹配2.4 边界匹配2.5 分组匹配2.6 贪婪模式&非贪婪模式2.7 标志位 一、数据库编程 可以使用python脚本对数据库进行操作&#xff0c;比如获取数据库数据…

Docker 搭建 LNMP + Wordpress(详细步骤)

目录 一、项目模拟 1. 项目环境 2. 服务器环境 3.任务需求 二、Linux 系统基础镜像 三、Nginx 1. 建立工作目录 2. 编写 Dockerfile 脚本 3. 准备 nginx.conf 配置文件 4. 生成镜像 5. 创建自定义网络 6. 启动镜像容器 7. 验证 nginx 四、Mysql 1.…

申请部署阿里云SSL免费证书

使用宝塔自动创建的证书有时候会报NET::ERR_CERT_COMMON_NAME_INVALID&#xff0c;并且每次只能三个月&#xff0c;需要点击续期非常麻烦&#xff0c;容易遗忘。 阿里云免费SSL证书 前往阿里云管理控制台【数字证书管理服务】【SSL证书】&#xff0c;每年20个额度&#xff0c;一…