猴子爬山一只顽猴在一座有N级台阶的小山上爬山跳跃。上山时需从山脚至山顶往上跳N级台阶,一步可跳1级,或跳3级,求上山有多少种不同的跳法? (N<50)
问题分析:
每一次都可以选择1,2,3有3种跳法
方法1 直接使用递归
jumpWay = [1, 3]footstep = int(input())jumping = 0#first writedef jump(nowstep, footstep, jumpWay):if nowstep == footstep:global jumpingjumping += 1returnelif nowstep > footstep:returnelse:for i in range(len(jumpWay)):jump(nowstep + jumpWay[i], footstep, jumpWay)jump(0, footstep, jumpWay)
但是这种方式会提示 递归层数过多
想办法对算法进行合理优化,排列组合
方法2 循环全排列
size = int(input())
n3 = size//3
res = 0# 求阶乘
def jiecheng(n):num = 1if n==1:return 1else:for i in range(1,n+1):num*=ireturn num# 求排列
def c43(n4,n3):# return jiecheng# 3!/(4-3)!*3!# j3 = jiecheng(3)return jiecheng(n4)//(jiecheng(n4-n3)*jiecheng(n3))# a32不用了
# def a32(n3,n2):
# return jiecheng(n2)//jiecheng(n3)-jiecheng(n2)# 循环
for i in range(size+1):# i 为有几个 1步的情况for j in range(n3+1):# j为有 几个 3步的情况if (i+j*3) == size:# temp 为总数temp = j+ires+=c43(temp,j)
print(res)