python 第三方模块之 APScheduler - 定时任务

介绍

APScheduler的全称是Advanced Python Scheduler。它是一个轻量级的 Python 定时任务调度框架。APScheduler 支持三种调度任务:固定时间间隔,固定时间点(日期),Linux 下的 Crontab 命令。同时,它还支持异步执行、后台执行调度任务。

APScheduler基于Quartz的一个Python定时任务框架,实现了Quartz的所有功能,使用起来十分方便。

安装

pip install apscheduler

官方地址

https://apscheduler.readthedocs.io/en/latest/userguide.html#starting-the-scheduler

基本概念

1.APScheduler四大组件

  • 触发器 triggers :用于设定触发任务的条件

  • 任务储存器 job stores:用于存放任务,把任务存放在内存或数据库中

  • 执行器 executors: 用于执行任务,可以设定执行模式为单线程或线程池

  • 调度器 schedulers: 把上方三个组件作为参数,通过创建调度器实例来运行

1.1 触发器triggers

触发器包含调度逻辑。每个任务都有自己的触发器,用于确定何时应该运行作业。除了初始配置之外,触发器完全是无状态的。

1.2 任务储存器 job stores

默认情况下,任务存放在内存中。也可以配置存放在不同类型的数据库中。如果任务存放在数据库中,那么任务的存取有一个序列化和反序列化的过程,同时修改和搜索任务的功能也是由任务储存器实现。

注意一个任务储存器不要共享给多个调度器,否则会导致状态混乱

1.3 执行器 executors

任务会被执行器放入线程池或进程池去执行,执行完毕后,执行器会通知调度器。

1.4 调度器 schedulers

一个调度器由上方三个组件构成,一般来说,一个程序只要有一个调度器就可以了。开发者也不必直接操作任务储存器、执行器以及触发器,因为调度器提供了统一的接口,通过调度器就可以操作组件,比如任务的增删改查。

调度器工作流程:
在这里插入图片描述

2. 调度器组件详解

根据开发需求选择相应的组件,下面是不同的调度器组件:

  • BlockingScheduler 阻塞式调度器:适用于只跑调度器的程序。
  • BackgroundScheduler 后台调度器:适用于非阻塞的情况,调度器会在后台独立运行。
  • AsyncIOScheduler AsyncIO调度器,适用于应用使用AsnycIO的情况。
  • GeventScheduler Gevent调度器,适用于应用通过Gevent的情况。
  • TornadoScheduler Tornado调度器,适用于构建Tornado应用。
  • TwistedScheduler Twisted调度器,适用于构建Twisted应用。
  • QtScheduler Qt调度器,适用于构建Qt应用。

2.1 任务储存器的选择

要看任务是否需要持久化。如果你运行的任务是无状态的,选择默认任务储存器MemoryJobStore就可以应付。但是,如果你需要在程序关闭或重启时,保存任务的状态,那么就要选择持久化的任务储存器。如果,作者推荐使用SQLAlchemyJobStore并搭配PostgreSQL作为后台数据库。这个方案可以提供强大的数据整合与保护功能。

2.2 执行器的选择

同样要看你的实际需求。默认的ThreadPoolExecutor线程池执行器方案可以满足大部分需求。如果,你的程序是计算密集型的,那么最好用ProcessPoolExecutor进程池执行器方案来充分利用多核算力。也可以将ProcessPoolExecutor作为第二执行器,混合使用两种不同的执行器。

配置一个任务,就要设置一个任务触发器。触发器可以设定任务运行的周期、次数和时间。

3. APScheduler有三种内置的触发器

  • date 日期:触发任务运行的具体日期
  • interval 间隔:触发任务运行的时间间隔
  • cron 周期:触发任务运行的周期
  • calendarinterval:当您想要在一天中的特定时间以日历为基础的间隔运行任务时使用

一个任务也可以设定多种触发器,比如,可以设定同时满足所有触发器条件而触发,或者满足一项即触发。

3.0 触发器代码示例

date 是最基本的一种调度,作业任务只会执行一次。它表示特定的时间点触发。它的参数如下:

  • run_date(datetime or str):任务运行的日期或者时间
  • timezone(datetime.tzinfo or str):指定时区
from datetime import date
from apscheduler.schedulers.blocking import BlockingSchedulerscheduler = BlockingScheduler()
def my_job(text):print(text)# 注意:run_date参数可以是date类型、datetime类型或文本类型。
# 在2019年4月15日执行
scheduler.add_job(my_job, 'date', run_date=date(2019, 4, 15), args=['测试任务'])
# datetime类型(用于精确时间)
# scheduler.add_job(my_job, 'date', run_date=datetime(2019, 4, 15, 17, 30, 5), args=['测试任务'])
# 字符串
#scheduler.add_job(my_job, 'date', run_date='2009-11-06 16:30:05', args=['测试任务'])scheduler.start()

3.2 interval 周期触发任务

固定时间间隔触发。interval 间隔调度,参数如下:

  • weeks(int):间隔几周
  • days(int):间隔几天
  • hours(int):间隔几小时
  • minutes(int):间隔几分钟
  • seconds(int):间隔多少秒
  • start_date(datetime or str):开始日期
  • end_date(datetime or str):结束日期
  • timezone(datetime.tzinfo or str):时区
from datetime import datetime
from apscheduler.schedulers.blocking import BlockingSchedulerdef job_func():print("当前时间:", datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")scheduler = BlockingScheduler()# 每2小时触发
scheduler.add_job(job_func, 'interval', hours=2)# 在 2019-04-15 17:00:00 ~ 2019-12-31 24:00:00 之间, 每隔两分钟执行一次 job_func 方法
scheduler .add_job(job_func, 'interval', minutes=2, start_date='2019-04-15 17:00:00' , end_date='2019-12-31 24:00:00')# jitter振动参数,给每次触发添加一个随机浮动秒数,一般适用于多服务器,避免同时运行造成服务拥堵。
scheduler.add_job(job_func, 'interval', hours=1, jitter=120)scheduler.start()

3.3 cron 触发器

在特定时间周期性地触发,和Linux crontab格式兼容。它是功能最强大的触发器。

  • year(int or str) 年,4位数字
  • month(int or str) 月(范围1-12)
  • day(int or str) 日(范围1-31)
  • week(int or str) 周(范围1-53)
  • day_of_week(int or str) 周内第几天或者星期几(范围0-6或者mon,tue,wed,thu,fri,stat,sun)
  • hour(int or str) 时(0-23)
  • minute(int or str) 分(0-59)
  • second(int or str) 秒(0-59)
  • start_date(datetime or str) 最早开始日期(含)
  • end_date(datetime or str) 最晚结束日期(含)
  • timezone(datetime.tzinfo or str) 指定时区

表达式类型

表达式参数类型描述
*所有通配符。例:minutes=*即每分钟触发
*/a所有可被a整除的通配符。
a-b所有范围a-b触发
a-b/c所有范围a-b,且可被c整除时触发
xth y第几个星期几触发。x为第几个,y为星期几
last x一个月中,最后个星期几触发
last一个月最后一天触发
x,y,z所有组合表达式,可以组合确定值或上方的表达式

注意:month和day_of_week参数分别接受的是英语缩写jan– dec 和 mon – sun

import datetime
from apscheduler.schedulers.background import BackgroundSchedulerdef job_func(text):print("当前时间:", datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3])scheduler = BackgroundScheduler()
# 在每年 1-3、7-9 月份中的每个星期一、二中的 00:00, 01:00, 02:00 和 03:00 执行 job_func 任务
scheduler.add_job(job_func, 'cron', month='1-3,7-9',day='0, tue', hour='0-3')scheduler.start()

使用 scheduled_job() 装饰器添加任务:

@scheduler.scheduled_job('cron', id='my_job_id', day='last sun')
def some_decorated_task():print("I am printed at 00:00:00 on the last Sunday of every month!")

注意:夏令时问题

有些timezone时区可能会有夏令时的问题。这个可能导致令时切换时,任务不执行或任务执行两次。避免这个问题,可以使用UTC时间,或提前预知并规划好执行的问题。

pri# 在Europe/Helsinki时区, 在三月最后一个周一就不会触发;在十月最后一个周一会触发两次
scheduler.add_job(job_function, 'cron', hour=3, minute=30)

4. 配置调度程序

APScheduler提供了许多不同的方法来配置调度程序。您可以使用配置字典,也可以将选项作为关键字参数传递。您还可以先实例化调度程序,然后添加任务并配置调度程序。这样您就可以在任何环境中获得最大的灵活性

可以在BaseScheduler类的API引用中找到调度程序级别配置选项的完整列表 。调度程序子类还可以具有其各自API引用中记录的其他选项。各个任务存储和执行程序的配置选项同样可以在其API参考页面上找到。

假设您希望在应用程序中使用默认作业存储和默认执行程序运行BackgroundScheduler:

from apscheduler.schedulers.background import BackgroundSchedulerscheduler = BackgroundScheduler()

这将为您提供一个BackgroundScheduler,其MemoryJobStore(内存任务储存器)名为“default”,ThreadPoolExecutor(线程池执行器)名为“default”,默认最大线程数为10。

假如你现在有这样的需求,两个任务储存器分别搭配两个执行器;同时,还要修改任务的默认参数;最后还要改时区。可以参考下面例子,它们是完全等价的。

  • 名称为“mongo”的MongoDBJobStore
  • 名称为“default”的SQLAlchemyJobStore
  • 名称为“ThreadPoolExecutor ”的ThreadPoolExecutor,最大线程20个
  • 名称“processpool”的ProcessPoolExecutor,最大进程5个
  • UTC时间作为调度器的时区
  • 默认为新任务关闭合并模式()
  • 设置新任务的默认最大实例数为3

方法一:

from pytz import utcfrom apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.mongodb import MongoDBJobStore
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutorjobstores = {'mongo': MongoDBJobStore(),'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {'default': ThreadPoolExecutor(20),'processpool': ProcessPoolExecutor(5)
}
job_defaults = {'coalesce': False,'max_instances': 3
}
scheduler = BackgroundScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, timezone=utc)

方法二:

from apscheduler.schedulers.background import BackgroundScheduler# The "apscheduler." prefix is hard coded
scheduler = BackgroundScheduler({'apscheduler.jobstores.mongo': {'type': 'mongodb'},'apscheduler.jobstores.default': {'type': 'sqlalchemy','url': 'sqlite:///jobs.sqlite'},'apscheduler.executors.default': {'class': 'apscheduler.executors.pool:ThreadPoolExecutor','max_workers': '20'},'apscheduler.executors.processpool': {'type': 'processpool','max_workers': '5'},'apscheduler.job_defaults.coalesce': 'false','apscheduler.job_defaults.max_instances': '3','apscheduler.timezone': 'UTC',
})

方法三:

from pytz import utcfrom apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ProcessPoolExecutorjobstores = {'mongo': {'type': 'mongodb'},'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {'default': {'type': 'threadpool', 'max_workers': 20},'processpool': ProcessPoolExecutor(max_workers=5)
}
job_defaults = {'coalesce': False,'max_instances': 3
}
scheduler = BackgroundScheduler()# ..这里可以添加任务scheduler.configure(jobstores=jobstores, executors=executors, job_defaults=job_defaults, timezone=utc)

启动调度器

启动调度器是只需调用start()即可。除了BlockingScheduler,非阻塞调度器都会立即返回,可以继续运行之后的代码,比如添加任务等。

对于BlockingScheduler,程序则会阻塞在start()位置,所以,要运行的代码必须写在start()之前。

注意:调度器启动后,就不可以修改配置。

5. 添加任务

添加任务方法有两种:

  1. 通过调用add_job()
  2. 通过装饰器scheduled_job()

5.1 利弊:

  • 第一种方法是最常用的;第二种方法是最方便的,但缺点就是运行时,不能修改任务。
  • 第一种add_job()方法会返回一个apscheduler.job.Job实例,这样就可以在运行时,修改或删除任务。

在任何时候你都能配置任务。但是如果调度器还没有启动,此时添加任务,那么任务就处于一个暂存的状态。只有当调度器启动时,才会开始计算下次运行时间。

还有一点要注意,如果你的执行器或任务储存器是会序列化任务的,那么这些任务就必须符合:

  • 回调函数必须全局可用
  • 回调函数参数必须也是可以被序列化的

重要提醒!

如果在程序初始化时,是从数据库读取任务的,那么必须为每个任务定义一个明确的ID,并且使用replace_existing=True,否则每次重启程序,你都会得到一份新的任务拷贝,也就意味着任务的状态不会保存。

内置任务储存器中,只有MemoryJobStore不会序列化任务;内置执行器中,只有ProcessPoolExecutor会序列化任务。

建议:如果想要立刻运行任务,可以在添加任务时省略trigger参数

6. 移除任务

如果想从调度器移除一个任务,那么你就要从相应的任务储存器中移除它,这样才算移除了。有两种方式:

  • 调用remove_job(),参数为:任务ID,任务储存器名称
  • 在通过add_job()创建的任务实例上调用remove()方法

第二种方式更方便,但前提必须在创建任务实例时,实例被保存在变量中。对于通过scheduled_job()创建的任务,只能选择第一种方式。

当任务调度结束时(比如,某个任务的触发器不再产生下次运行的时间),任务就会自动移除。

job = scheduler.add_job(myfunc, 'interval', minutes=2)
job.remove()# 同样,通过任务的具体ID:
scheduler.add_job(myfunc, 'interval', minutes=2, id='my_job_id')
scheduler.remove_job('my_job_id')

7. 暂停和恢复任务

通过任务实例或调度器,就能暂停和恢复任务。如果一个任务被暂停了,那么该任务的下一次运行时间就会被移除。在恢复任务前,运行次数计数也不会被统计。

暂停任务,有以下两个方法:

  • apscheduler.job.Job.pause()
  • apscheduler.schedulers.base.BaseScheduler.pause_job()

恢复任务

  • apscheduler.job.Job.resume()
  • apscheduler.schedulers.base.BaseScheduler.resume_job()

8. 获取任务列表

通过get_jobs()就可以获得一个可修改的任务列表。get_jobs()第二个参数可以指定任务储存器名称,那么就会获得对应任务储存器的任务列表。

print_jobs()可以快速打印格式化的任务列表,包含触发器,下次运行时间等信息。

修改任务

通过apscheduler.job.Job.modify()或modify_job(),你可以修改任务当中除了id的任何属性。

比如:

job.modify(max_instances=6, name='Alternate name')

如果想要重新调度任务(就是改变触发器),你能通过apscheduler.job.Job.reschedule()或reschedule_job()来实现。这些方法会重新创建触发器,并重新计算下次运行时间。

比如:

scheduler.reschedule_job('my_job_id', trigger='cron', minute='*/5')

9. 关闭调度器

scheduler.shutdown()

默认情况下,调度器会先把正在执行的任务处理完,再关闭任务储存器和执行器。但是,如果你就直接关闭,你可以添加参数:

scheduler.shutdown(wait=False)

上述方法不管有没有任务在执行,会强制关闭调度器。

10. 暂停、恢复任务进程

# 暂停正在执行的任务
scheduler.pause()# 恢复任务:
scheduler.resume()# 也可以在调度器启动时,默认所有任务设为暂停状态。
scheduler.start(paused=True)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/453817.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

hadoop分布式搭建

一,前提:下载好虚拟机和安装完毕Ubuntu系统。因为我们配置的是hadoop分布式,所以需要两台虚拟机,一台主机(master),一台从机(slave) 选定一台机器作为 Master 在 Master …

Python 第三方模块之 imgaug (图像增强)

imgaug是一个封装好的用来进行图像augmentation的python库,支持关键点(keypoint)和bounding box一起变换。 项目主页: imgaug doc 1. 安装和卸载 # 通过github安装 sudo pip install githttps://github.com/aleju/imgaug# 通过pypi安装 sudo pip install imgaug# 本地安装, …

MPEG(mpeg1,mpeg2,mpeg4) 与H264 QP值间 关系

H264 Quant与MPEG Quant数值参对表 x264vfw 的1pass 是按照I q:21P q:24B q:26的量化算的,而且在vfw里面不能改变这些参数.但在mencoder里则可以定义1pass的 qp_constant<1−51>这个和xvid不同的,xvid一般是用q2跑1pass的,当然你也可以在x264设置一下,但是要清楚的是 H.2…

maya脚本用python还是mel_替换/替换材质的Maya Python/MEL脚本

在CreativeCrash上有一个旧线程处理此问题。我在那里展示的脚本如下(请参阅原始线程了解更多信息)&#xff1a;proc connectAndSet(string $original, string $target){$conn connectionInfo -sfd $original;if ($conn ! ""){connectAttr -force $conn $target;} el…

FreeBSD长模式不兼容

二进制转换与此平台上的长模式不兼容。此虚拟环境中的长模式将被禁用。因此需要使用长模式的应用程序将无法正常运行。请参见 http://vmware.com/info?id152 了解更多详细信息。 mark转载于:https://www.cnblogs.com/tuhooo/p/8116442.html

Python 第三方模块之 numpy.random

本文概述 随机数是NumPy库中存在的模块。该模块包含用于生成随机数的功能。该模块包含一些简单的随机数据生成方法, 一些排列和分布函数以及随机生成器函数。 简单随机数据 简单随机数据具有以下功能&#xff1a; 1)p.random.rand(d0, d1, …, dn) 随机模块的此功能用于生…

xvid 详解 代码分析 编译等

1. Xvid参数详解 众所周知&#xff0c;Mencoder以其极高的压缩速率和不错的画质赢得了很多朋友的认同&#xff01; 原来用Mencoder压缩Xvid的AVI都是使用Xvid编码器的默认设置&#xff0c;现在我来给大家冲冲电&#xff0c;讲解一下怎样使用Mencoder命令行高级参数制作Xvid编…

s4800扫描电镜的CSS3_Hitachi S-4800型场发射扫描电子显微镜+能谱

一、主要部件&#xff1a;S-4800主机(包括真空系统、电子光学系统、检测器)、X射线能谱仪&#xff0c;E-1030喷金喷碳装置等。二、主要性能指标&#xff1a;二次电子分辨率&#xff1a;1.0 nm(15 kV)&#xff1b;2.0 nm(1 kV)&#xff1b;背散射电子分辨率&#xff1a;3.0 nm (…

很多人喜欢露脚踝你觉得时尚吗?

当然是 时尚时尚最时尚的 露&#xff01;****脚&#xff01;脖&#xff01;子&#xff01;image.png人生就是这么奇怪 美容整形可以让你拥有想要的五官 做个手术健个身能让你拥有梦寐的线条 唯独身高这事很难改变&#xff08;说多了都是泪&#xff09; 氮素呢 再难也难不倒众位…

深度学习之生成式对抗网络 GAN(Generative Adversarial Networks)

一、GAN介绍 生成式对抗网络GAN&#xff08;Generative Adversarial Networks&#xff09;是一种深度学习模型&#xff0c;是近年来复杂分布上无监督学习最具前景的方法之一。它源于2014年发表的论文&#xff1a;《Generative Adversarial Nets》&#xff0c;论文地址&#xf…

android object数组赋值_Java对象数组定义与用法详解

本文实例讲述了Java对象数组定义与用法。分享给大家供大家参考&#xff0c;具体如下&#xff1a;所谓的对象数组&#xff0c;就是指包含了一组相关的对象&#xff0c;但是在对象数组的使用中一定要清楚一点&#xff1a;数组一定要先开辟空间&#xff0c;但是因为其是引用数据类…

Fiddler抓取https证书问题

正常的使用方法 Fiddler 抓包工具总结 大部分问题的解决方案 fiddler4在win7抓取https的配置整理 像我脸一样黑的解决方案 Fiddler https 证书问题 可能的解释&#xff1a; Fiddler自带两个cert engine&#xff0c;一个是makecert&#xff0c;一个是CertEnroll&#xff0c;可…

深度学习之目标检测:R-CNN、Fast R-CNN、Faster R-CNN

object detection 就是在给定的图片中精确找到物体所在位置&#xff0c;并标注出物体的类别。object detection 要解决的问题就是物体在哪里&#xff0c;是什么这整个流程的问题。然而&#xff0c;这个问题不是容易解决的&#xff0c;物体的尺寸变化范围很大&#xff0c;摆放物…

九江机器人餐厅_机器人精通200道佳肴 九江学院来了多位机器厨神

九江学院来了多位“机器厨神”●炒菜机一次能炒近10公斤菜&#xff0c;三四分钟就能出锅&#xff0c;味道也不错●煮饭机从淘米到煮熟全部自动机械化操作&#xff0c;效率提高了不少电脑开启&#xff0c;设定好程序&#xff0c;机器就可以自动运转&#xff0c;快速炒出美味可口…

深度学习之边框回归(Bounding Box Regression)

从rcnn&#xff0c; fast rcnn, faster rcnn, yolo, r-fcn, ssd&#xff0c;到cvpr的yolo9000。这些paper中损失函数都包含了边框回归&#xff0c;除了rcnn详细介绍了&#xff0c;其他的paper都是一笔带过&#xff0c;或者直接引用rcnn就把损失函数写出来了。前三条网上解释比较…

2018 年,React 将独占web前端框架鳌头?

相比 Angular 和 Vue&#xff0c; React 是 2017 年的主要 JS 框架&#xff0c;尤其是 React Native 以前所未有的速度提升自己。 Stateofjs 2017前端框架调查结果 相比较 2016 年的调查结果 所以 &#xff0c;1 年过去了&#xff0c;Vue.js 显然在前端框架中占据了领导地位&am…

ffmpeg的编译(for x86,for arm)安装及使用(网络资料整理)

ffmpeg编译及使用 1 ffmpeg介绍 ffmpeg是音视频的分离&#xff0c;转换&#xff0c;编码解码及流媒体的完全解决方案&#xff0c;其中最重要的就是libavcodec库。它被mplayer或者xine使用作为解码器。还有&#xff0c;国内比较流行的播放器影音风暴或MyMPC的后端ffdshow也是使…

python中other_Python other

最新项目django tinymcewrapper允许您轻松地将tinymce小部件添加到其他应用程序管理表单中&#xff0c;而无需修改其他应用程序。此包Python名称&#xff1a;djang ...2020-12-24已阅读: n次##这是什么&#xff1f;愚蠢的服务器可以帮助您模拟一些尚未实现的http服务&#xff0…

python 第三方模块之 pandas 操作 excel

python 解析 excel 对比 包版本xls读xlsx读xls写xlsx写备注xlrd1.1.0&#xff08;2017年8月22日&#xff09;√√2.0 之后不支持xlsxxlwt1.3.0&#xff08;2017年8月22日&#xff09;√openpyxl2.6.2&#xff08;2019年3月29日&#xff09;√√XlsxWriter1.2.1&#xff08;201…

JMeter响应断言详解

响应断言 &#xff1a;对服务器的响应进行断言校验 &#xff08;1&#xff09;应用范围: main sample and sub sample&#xff0c; main sample only &#xff0c; sub-sample only &#xff0c; jmeter variable    关于应用范围&#xff0c;我们大多数勾选“main sample on…