python 第三方模块之 APScheduler - 定时任务

介绍

APScheduler的全称是Advanced Python Scheduler。它是一个轻量级的 Python 定时任务调度框架。APScheduler 支持三种调度任务:固定时间间隔,固定时间点(日期),Linux 下的 Crontab 命令。同时,它还支持异步执行、后台执行调度任务。

APScheduler基于Quartz的一个Python定时任务框架,实现了Quartz的所有功能,使用起来十分方便。

安装

pip install apscheduler

官方地址

https://apscheduler.readthedocs.io/en/latest/userguide.html#starting-the-scheduler

基本概念

1.APScheduler四大组件

  • 触发器 triggers :用于设定触发任务的条件

  • 任务储存器 job stores:用于存放任务,把任务存放在内存或数据库中

  • 执行器 executors: 用于执行任务,可以设定执行模式为单线程或线程池

  • 调度器 schedulers: 把上方三个组件作为参数,通过创建调度器实例来运行

1.1 触发器triggers

触发器包含调度逻辑。每个任务都有自己的触发器,用于确定何时应该运行作业。除了初始配置之外,触发器完全是无状态的。

1.2 任务储存器 job stores

默认情况下,任务存放在内存中。也可以配置存放在不同类型的数据库中。如果任务存放在数据库中,那么任务的存取有一个序列化和反序列化的过程,同时修改和搜索任务的功能也是由任务储存器实现。

注意一个任务储存器不要共享给多个调度器,否则会导致状态混乱

1.3 执行器 executors

任务会被执行器放入线程池或进程池去执行,执行完毕后,执行器会通知调度器。

1.4 调度器 schedulers

一个调度器由上方三个组件构成,一般来说,一个程序只要有一个调度器就可以了。开发者也不必直接操作任务储存器、执行器以及触发器,因为调度器提供了统一的接口,通过调度器就可以操作组件,比如任务的增删改查。

调度器工作流程:
在这里插入图片描述

2. 调度器组件详解

根据开发需求选择相应的组件,下面是不同的调度器组件:

  • BlockingScheduler 阻塞式调度器:适用于只跑调度器的程序。
  • BackgroundScheduler 后台调度器:适用于非阻塞的情况,调度器会在后台独立运行。
  • AsyncIOScheduler AsyncIO调度器,适用于应用使用AsnycIO的情况。
  • GeventScheduler Gevent调度器,适用于应用通过Gevent的情况。
  • TornadoScheduler Tornado调度器,适用于构建Tornado应用。
  • TwistedScheduler Twisted调度器,适用于构建Twisted应用。
  • QtScheduler Qt调度器,适用于构建Qt应用。

2.1 任务储存器的选择

要看任务是否需要持久化。如果你运行的任务是无状态的,选择默认任务储存器MemoryJobStore就可以应付。但是,如果你需要在程序关闭或重启时,保存任务的状态,那么就要选择持久化的任务储存器。如果,作者推荐使用SQLAlchemyJobStore并搭配PostgreSQL作为后台数据库。这个方案可以提供强大的数据整合与保护功能。

2.2 执行器的选择

同样要看你的实际需求。默认的ThreadPoolExecutor线程池执行器方案可以满足大部分需求。如果,你的程序是计算密集型的,那么最好用ProcessPoolExecutor进程池执行器方案来充分利用多核算力。也可以将ProcessPoolExecutor作为第二执行器,混合使用两种不同的执行器。

配置一个任务,就要设置一个任务触发器。触发器可以设定任务运行的周期、次数和时间。

3. APScheduler有三种内置的触发器

  • date 日期:触发任务运行的具体日期
  • interval 间隔:触发任务运行的时间间隔
  • cron 周期:触发任务运行的周期
  • calendarinterval:当您想要在一天中的特定时间以日历为基础的间隔运行任务时使用

一个任务也可以设定多种触发器,比如,可以设定同时满足所有触发器条件而触发,或者满足一项即触发。

3.0 触发器代码示例

date 是最基本的一种调度,作业任务只会执行一次。它表示特定的时间点触发。它的参数如下:

  • run_date(datetime or str):任务运行的日期或者时间
  • timezone(datetime.tzinfo or str):指定时区
from datetime import date
from apscheduler.schedulers.blocking import BlockingSchedulerscheduler = BlockingScheduler()
def my_job(text):print(text)# 注意:run_date参数可以是date类型、datetime类型或文本类型。
# 在2019年4月15日执行
scheduler.add_job(my_job, 'date', run_date=date(2019, 4, 15), args=['测试任务'])
# datetime类型(用于精确时间)
# scheduler.add_job(my_job, 'date', run_date=datetime(2019, 4, 15, 17, 30, 5), args=['测试任务'])
# 字符串
#scheduler.add_job(my_job, 'date', run_date='2009-11-06 16:30:05', args=['测试任务'])scheduler.start()

3.2 interval 周期触发任务

固定时间间隔触发。interval 间隔调度,参数如下:

  • weeks(int):间隔几周
  • days(int):间隔几天
  • hours(int):间隔几小时
  • minutes(int):间隔几分钟
  • seconds(int):间隔多少秒
  • start_date(datetime or str):开始日期
  • end_date(datetime or str):结束日期
  • timezone(datetime.tzinfo or str):时区
from datetime import datetime
from apscheduler.schedulers.blocking import BlockingSchedulerdef job_func():print("当前时间:", datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")scheduler = BlockingScheduler()# 每2小时触发
scheduler.add_job(job_func, 'interval', hours=2)# 在 2019-04-15 17:00:00 ~ 2019-12-31 24:00:00 之间, 每隔两分钟执行一次 job_func 方法
scheduler .add_job(job_func, 'interval', minutes=2, start_date='2019-04-15 17:00:00' , end_date='2019-12-31 24:00:00')# jitter振动参数,给每次触发添加一个随机浮动秒数,一般适用于多服务器,避免同时运行造成服务拥堵。
scheduler.add_job(job_func, 'interval', hours=1, jitter=120)scheduler.start()

3.3 cron 触发器

在特定时间周期性地触发,和Linux crontab格式兼容。它是功能最强大的触发器。

  • year(int or str) 年,4位数字
  • month(int or str) 月(范围1-12)
  • day(int or str) 日(范围1-31)
  • week(int or str) 周(范围1-53)
  • day_of_week(int or str) 周内第几天或者星期几(范围0-6或者mon,tue,wed,thu,fri,stat,sun)
  • hour(int or str) 时(0-23)
  • minute(int or str) 分(0-59)
  • second(int or str) 秒(0-59)
  • start_date(datetime or str) 最早开始日期(含)
  • end_date(datetime or str) 最晚结束日期(含)
  • timezone(datetime.tzinfo or str) 指定时区

表达式类型

表达式参数类型描述
*所有通配符。例:minutes=*即每分钟触发
*/a所有可被a整除的通配符。
a-b所有范围a-b触发
a-b/c所有范围a-b,且可被c整除时触发
xth y第几个星期几触发。x为第几个,y为星期几
last x一个月中,最后个星期几触发
last一个月最后一天触发
x,y,z所有组合表达式,可以组合确定值或上方的表达式

注意:month和day_of_week参数分别接受的是英语缩写jan– dec 和 mon – sun

import datetime
from apscheduler.schedulers.background import BackgroundSchedulerdef job_func(text):print("当前时间:", datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3])scheduler = BackgroundScheduler()
# 在每年 1-3、7-9 月份中的每个星期一、二中的 00:00, 01:00, 02:00 和 03:00 执行 job_func 任务
scheduler.add_job(job_func, 'cron', month='1-3,7-9',day='0, tue', hour='0-3')scheduler.start()

使用 scheduled_job() 装饰器添加任务:

@scheduler.scheduled_job('cron', id='my_job_id', day='last sun')
def some_decorated_task():print("I am printed at 00:00:00 on the last Sunday of every month!")

注意:夏令时问题

有些timezone时区可能会有夏令时的问题。这个可能导致令时切换时,任务不执行或任务执行两次。避免这个问题,可以使用UTC时间,或提前预知并规划好执行的问题。

pri# 在Europe/Helsinki时区, 在三月最后一个周一就不会触发;在十月最后一个周一会触发两次
scheduler.add_job(job_function, 'cron', hour=3, minute=30)

4. 配置调度程序

APScheduler提供了许多不同的方法来配置调度程序。您可以使用配置字典,也可以将选项作为关键字参数传递。您还可以先实例化调度程序,然后添加任务并配置调度程序。这样您就可以在任何环境中获得最大的灵活性

可以在BaseScheduler类的API引用中找到调度程序级别配置选项的完整列表 。调度程序子类还可以具有其各自API引用中记录的其他选项。各个任务存储和执行程序的配置选项同样可以在其API参考页面上找到。

假设您希望在应用程序中使用默认作业存储和默认执行程序运行BackgroundScheduler:

from apscheduler.schedulers.background import BackgroundSchedulerscheduler = BackgroundScheduler()

这将为您提供一个BackgroundScheduler,其MemoryJobStore(内存任务储存器)名为“default”,ThreadPoolExecutor(线程池执行器)名为“default”,默认最大线程数为10。

假如你现在有这样的需求,两个任务储存器分别搭配两个执行器;同时,还要修改任务的默认参数;最后还要改时区。可以参考下面例子,它们是完全等价的。

  • 名称为“mongo”的MongoDBJobStore
  • 名称为“default”的SQLAlchemyJobStore
  • 名称为“ThreadPoolExecutor ”的ThreadPoolExecutor,最大线程20个
  • 名称“processpool”的ProcessPoolExecutor,最大进程5个
  • UTC时间作为调度器的时区
  • 默认为新任务关闭合并模式()
  • 设置新任务的默认最大实例数为3

方法一:

from pytz import utcfrom apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.mongodb import MongoDBJobStore
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutorjobstores = {'mongo': MongoDBJobStore(),'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {'default': ThreadPoolExecutor(20),'processpool': ProcessPoolExecutor(5)
}
job_defaults = {'coalesce': False,'max_instances': 3
}
scheduler = BackgroundScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, timezone=utc)

方法二:

from apscheduler.schedulers.background import BackgroundScheduler# The "apscheduler." prefix is hard coded
scheduler = BackgroundScheduler({'apscheduler.jobstores.mongo': {'type': 'mongodb'},'apscheduler.jobstores.default': {'type': 'sqlalchemy','url': 'sqlite:///jobs.sqlite'},'apscheduler.executors.default': {'class': 'apscheduler.executors.pool:ThreadPoolExecutor','max_workers': '20'},'apscheduler.executors.processpool': {'type': 'processpool','max_workers': '5'},'apscheduler.job_defaults.coalesce': 'false','apscheduler.job_defaults.max_instances': '3','apscheduler.timezone': 'UTC',
})

方法三:

from pytz import utcfrom apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ProcessPoolExecutorjobstores = {'mongo': {'type': 'mongodb'},'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {'default': {'type': 'threadpool', 'max_workers': 20},'processpool': ProcessPoolExecutor(max_workers=5)
}
job_defaults = {'coalesce': False,'max_instances': 3
}
scheduler = BackgroundScheduler()# ..这里可以添加任务scheduler.configure(jobstores=jobstores, executors=executors, job_defaults=job_defaults, timezone=utc)

启动调度器

启动调度器是只需调用start()即可。除了BlockingScheduler,非阻塞调度器都会立即返回,可以继续运行之后的代码,比如添加任务等。

对于BlockingScheduler,程序则会阻塞在start()位置,所以,要运行的代码必须写在start()之前。

注意:调度器启动后,就不可以修改配置。

5. 添加任务

添加任务方法有两种:

  1. 通过调用add_job()
  2. 通过装饰器scheduled_job()

5.1 利弊:

  • 第一种方法是最常用的;第二种方法是最方便的,但缺点就是运行时,不能修改任务。
  • 第一种add_job()方法会返回一个apscheduler.job.Job实例,这样就可以在运行时,修改或删除任务。

在任何时候你都能配置任务。但是如果调度器还没有启动,此时添加任务,那么任务就处于一个暂存的状态。只有当调度器启动时,才会开始计算下次运行时间。

还有一点要注意,如果你的执行器或任务储存器是会序列化任务的,那么这些任务就必须符合:

  • 回调函数必须全局可用
  • 回调函数参数必须也是可以被序列化的

重要提醒!

如果在程序初始化时,是从数据库读取任务的,那么必须为每个任务定义一个明确的ID,并且使用replace_existing=True,否则每次重启程序,你都会得到一份新的任务拷贝,也就意味着任务的状态不会保存。

内置任务储存器中,只有MemoryJobStore不会序列化任务;内置执行器中,只有ProcessPoolExecutor会序列化任务。

建议:如果想要立刻运行任务,可以在添加任务时省略trigger参数

6. 移除任务

如果想从调度器移除一个任务,那么你就要从相应的任务储存器中移除它,这样才算移除了。有两种方式:

  • 调用remove_job(),参数为:任务ID,任务储存器名称
  • 在通过add_job()创建的任务实例上调用remove()方法

第二种方式更方便,但前提必须在创建任务实例时,实例被保存在变量中。对于通过scheduled_job()创建的任务,只能选择第一种方式。

当任务调度结束时(比如,某个任务的触发器不再产生下次运行的时间),任务就会自动移除。

job = scheduler.add_job(myfunc, 'interval', minutes=2)
job.remove()# 同样,通过任务的具体ID:
scheduler.add_job(myfunc, 'interval', minutes=2, id='my_job_id')
scheduler.remove_job('my_job_id')

7. 暂停和恢复任务

通过任务实例或调度器,就能暂停和恢复任务。如果一个任务被暂停了,那么该任务的下一次运行时间就会被移除。在恢复任务前,运行次数计数也不会被统计。

暂停任务,有以下两个方法:

  • apscheduler.job.Job.pause()
  • apscheduler.schedulers.base.BaseScheduler.pause_job()

恢复任务

  • apscheduler.job.Job.resume()
  • apscheduler.schedulers.base.BaseScheduler.resume_job()

8. 获取任务列表

通过get_jobs()就可以获得一个可修改的任务列表。get_jobs()第二个参数可以指定任务储存器名称,那么就会获得对应任务储存器的任务列表。

print_jobs()可以快速打印格式化的任务列表,包含触发器,下次运行时间等信息。

修改任务

通过apscheduler.job.Job.modify()或modify_job(),你可以修改任务当中除了id的任何属性。

比如:

job.modify(max_instances=6, name='Alternate name')

如果想要重新调度任务(就是改变触发器),你能通过apscheduler.job.Job.reschedule()或reschedule_job()来实现。这些方法会重新创建触发器,并重新计算下次运行时间。

比如:

scheduler.reschedule_job('my_job_id', trigger='cron', minute='*/5')

9. 关闭调度器

scheduler.shutdown()

默认情况下,调度器会先把正在执行的任务处理完,再关闭任务储存器和执行器。但是,如果你就直接关闭,你可以添加参数:

scheduler.shutdown(wait=False)

上述方法不管有没有任务在执行,会强制关闭调度器。

10. 暂停、恢复任务进程

# 暂停正在执行的任务
scheduler.pause()# 恢复任务:
scheduler.resume()# 也可以在调度器启动时,默认所有任务设为暂停状态。
scheduler.start(paused=True)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/453817.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

hadoop分布式搭建

一,前提:下载好虚拟机和安装完毕Ubuntu系统。因为我们配置的是hadoop分布式,所以需要两台虚拟机,一台主机(master),一台从机(slave) 选定一台机器作为 Master 在 Master …

xvid 详解 代码分析 编译等

1. Xvid参数详解 众所周知,Mencoder以其极高的压缩速率和不错的画质赢得了很多朋友的认同! 原来用Mencoder压缩Xvid的AVI都是使用Xvid编码器的默认设置,现在我来给大家冲冲电,讲解一下怎样使用Mencoder命令行高级参数制作Xvid编…

很多人喜欢露脚踝你觉得时尚吗?

当然是 时尚时尚最时尚的 露!****脚!脖!子!image.png人生就是这么奇怪 美容整形可以让你拥有想要的五官 做个手术健个身能让你拥有梦寐的线条 唯独身高这事很难改变(说多了都是泪) 氮素呢 再难也难不倒众位…

深度学习之生成式对抗网络 GAN(Generative Adversarial Networks)

一、GAN介绍 生成式对抗网络GAN(Generative Adversarial Networks)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。它源于2014年发表的论文:《Generative Adversarial Nets》,论文地址&#xf…

深度学习之目标检测:R-CNN、Fast R-CNN、Faster R-CNN

object detection 就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection 要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题不是容易解决的,物体的尺寸变化范围很大,摆放物…

深度学习之边框回归(Bounding Box Regression)

从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到cvpr的yolo9000。这些paper中损失函数都包含了边框回归,除了rcnn详细介绍了,其他的paper都是一笔带过,或者直接引用rcnn就把损失函数写出来了。前三条网上解释比较…

2018 年,React 将独占web前端框架鳌头?

相比 Angular 和 Vue, React 是 2017 年的主要 JS 框架,尤其是 React Native 以前所未有的速度提升自己。 Stateofjs 2017前端框架调查结果 相比较 2016 年的调查结果 所以 ,1 年过去了,Vue.js 显然在前端框架中占据了领导地位&am…

python 第三方模块之 pandas 操作 excel

python 解析 excel 对比 包版本xls读xlsx读xls写xlsx写备注xlrd1.1.0(2017年8月22日)√√2.0 之后不支持xlsxxlwt1.3.0(2017年8月22日)√openpyxl2.6.2(2019年3月29日)√√XlsxWriter1.2.1(201…

YUV / RGB 格式及快速转换

YUV是指亮度参量和色度参量分开表示的像素格式,而这样分开的好处就是不但可以避免相互干扰,还可以降低色度的采样率而不会对图像质量影响太大。 YUV是一个比较笼统地说法,针对它的具体排列方式,可以分为很多种具体的格式。转载一篇…

深度学习之 SSD(Single Shot MultiBox Detector)

目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型: (1)two-stage方法,如R-CNN系算法,其主要思路是先通过启发式方法(selective search)或者CNN网络(RP…

短时程突触可塑性(short-term synaptic plasticity)

介绍神经元的突触可塑性一般被认为是大脑学习与记忆的分子生物学机制,它是指突触传递效率增强或减弱的变化现象。若这种变化只持续数十毫秒到几分,便称之为短时程突触可塑性,其中效率增强与减弱分别叫做短时程增强(short-term enh…

windows平台下vlc编译

转自:http://jeremiah.blog.51cto.com/539865/114190Jeremiah刚刚工作几个月,参与的第一个项目是与视频监控有关,分配给我的任务就是用开源的vlc做一个自己的播放器。对于开源项目来说,搭建起编译环境是第一步也是最重要的一步。Jeremiah在历…

深度学习之卷积神经网络 AlexNet

AlexNet 是 2012年ILSVRC 比赛冠军,远超第二名的CNN,比LeNet更深,用多层小卷积叠加来替换单个的大卷积,结构如下图所示。 ​​ 结构 预处理 原始图片:256∗256∗3256*256*3256∗256∗3 图像处理: 1.随机…

jstl处理栏目与子栏目_芬顿氧化法废水处理工程技术规范(征求意见稿)

日前,生态环境部印发《芬顿氧化法废水处理工程技术规范(征求意见稿)》,详情如下:各有关单位:为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》等法律法规,防治环境污染,改善环境质量&a…

深度学习之卷积神经网络 ZF Net

ZFNet出自论文《 Visualizing and Understanding Convolutional Networks》,作者Matthew D. Zeiler和Rob Fergus——显然ZFNet是以两位作者名字的首字母命名的。ZFNet通常被认为是ILSVRC 2013的冠军方法,但实际上ZFNet排在第3名,前两名分别是…

vb整合多个excel表格到一张_[Excel]同一工作簿中多个工作表保存成独立的表格

一个工作簿中有多个表格,如何将其表格单独保存成一个独立的文档呢?如果表格少,操作如下:选中要导出表格的标签名--鼠标邮件--移动或复制表格--新建工作簿。当如果表格太多呢,以上方法就太罗嗦了。简单方法用VBA,步骤如…

OpenCore 的代码结构

OpenCore的代码结构 以开源Android 的代码为例,Open Core 的代码在Android 代码的External/Opencore 目录 中。这个目录是OpenCore 的根目录,其中包含的子目录如下所示: android:这里面是一个上层的库,它基于PVPlaye…

深度学习之卷积神经网络 GoogleNet

GoogLeNet Incepetion V1 这是GoogLeNet的最早版本,出现在2014年的《Going deeper with convolutions》。之所以名为“GoogLeNet”而非“GoogleNet”,文章说是为了向早期的LeNet致敬。 深度学习以及神经网络快速发展,人们不再只关注更给力的硬件、更大…

Jzoj4348 打击目标

又是被水题坑了。。。 一直想不出来看题解说要什么主席树,于是开始打离线算法 结果打到一半发现要强制在线。。No!!! 发现直接AC自动机似乎可做?树剖之后在AC自动机上跑的时候判断一下不就好了吗!连线段树都不要 让后快乐切掉,速度还可以&…

深度学习之卷积神经网络 VGGNet

2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是…