[转]CNN目标检测(一):Faster RCNN详解

https://blog.csdn.net/a8039974/article/details/77592389

 

Faster RCNN github : https://github.com/rbgirshick/py-faster-rcnn

Faster RCNN paper : https://arxiv.org/abs/1506.01497

Bound box regression详解 : http://download.csdn.net/download/zy1034092330/9940097(来源:王斌_ICT)

 

缩进经过RCNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。

图1 Faster CNN基本结构(来自原论文)

缩进依作者看来,如图1,Faster RCNN其实可以分为4个主要内容:

  1. Conv layers。作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取image的feature maps。该feature maps被共享用于后续RPN层和全连接层。
  2. Region Proposal Networks。RPN网络用于生成region proposals。该层通过softmax判断anchors属于foreground或者background,再利用bounding box regression修正anchors获得精确的proposals。
  3. Roi Pooling。该层收集输入的feature maps和proposals,综合这些信息后提取proposal feature maps,送入后续全连接层判定目标类别。
  4. Classification。利用proposal feature maps计算proposal的类别,同时再次bounding box regression获得检测框最终的精确位置。

所以本文以上述4个内容作为切入点介绍Faster RCNN网络。

缩进图2展示了python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构,可以清晰的看到该网络对于一副任意大小PxQ的图像,首先缩放至固定大小MxN,然后将MxN图像送入网络;而Conv layers中包含了13个conv层+13个relu层+4个pooling层;RPN网络首先经过3x3卷积,再分别生成foreground anchors与bounding box regression偏移量,然后计算出proposals;而Roi Pooling层则利用proposals从feature maps中提取proposal feature送入后续全连接和softmax网络作classification(即分类proposal到底是什么object)。

path:${py-faster-rcnn-root}/models/pascal_voc/VGG16/faster_rcnn_alt_opt/faster_rcnn_test.pt

图2 faster_rcnn_test.pt网络结构

1 Conv layers

缩进Conv layers包含了conv,pooling,relu三种层。以python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构为例,如图2,Conv layers部分共有13个conv层,13个relu层,4个pooling层。这里有一个非常容易被忽略但是又无比重要的信息,在Conv layers中:

  1. 所有的conv层都是:kernel_size=3,pad=1
  2. 所有的pooling层都是:kernel_size=2,stride=2

为何重要?在Faster RCNN Conv layers中对所有的卷积都做了扩边处理(pad=1,即填充一圈0),导致原图变为(M+2)x(N+2)大小,再做3x3卷积后输出MxN。正是这种设置,导致Conv layers中的conv层不改变输入和输出矩阵大小。如图3:

图3

类似的是,Conv layers中的pooling层kernel_size=2,stride=2。这样每个经过pooling层的MxN矩阵,都会变为(M/2)*(N/2)大小。综上所述,在整个Conv layers中,conv和relu层不改变输入输出大小,只有pooling层使输出长宽都变为输入的1/2。

缩进那么,一个MxN大小的矩阵经过Conv layers固定变为(M/16)x(N/16)!这样Conv layers生成的featuure map中都可以和原图对应起来。

 

2 Region Proposal Networks(RPN)

缩进经典的检测方法生成检测框都非常耗时,如OpenCV adaboost使用滑动窗口+图像金字塔生成检测框;或如RCNN使用SS(Selective Search)方法生成检测框。而Faster RCNN则抛弃了传统的滑动窗口和SS方法,直接使用RPN生成检测框,这也是Faster RCNN的巨大优势,能极大提升检测框的生成速度。

图4 RPN网络结构

上图4展示了RPN网络的具体结构。可以看到RPN网络实际分为2条线,上面一条通过softmax分类anchors获得foreground和background(检测目标是foreground),下面一条用于计算对于anchors的bounding box regression偏移量,以获得精确的proposal。而最后的Proposal层则负责综合foreground anchors和bounding box regression偏移量获取proposals,同时剔除太小和超出边界的proposals。其实整个网络到了Proposal Layer这里,就完成了相当于目标定位的功能。

2.1 多通道图像卷积基础知识介绍

缩进在介绍RPN前,还要多解释几句基础知识,已经懂的看官老爷跳过就好。
  1. 对于单通道图像+单卷积核做卷积,第一章中的图3已经展示了;
  2. 对于多通道图像+多卷积核做卷积,计算方式如下:
图5 多通道+多卷积核做卷积示意图(摘自Theano教程)
缩进如图5,输入图像layer m-1有4个通道,同时有2个卷积核w1和w2。对于卷积核w1,先在输入图像4个通道分别作卷积,再将4个通道结果加起来得到w1的卷积输出;卷积核w2类似。所以对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积核数量!
缩进对多通道图像做1x1卷积,其实就是将输入图像于每个通道乘以卷积系数后加在一起,即相当于把原图像中本来各个独立的通道“联通”在了一起。

2.2 anchors

缩进提到RPN网络,就不能不说anchors。所谓anchors,实际上就是一组由rpn/generate_anchors.py生成的矩形。直接运行作者demo中的generate_anchors.py可以得到以下输出:

[[ -84.  -40.   99.   55.][-176.  -88.  191.  103.][-360. -184.  375.  199.][ -56.  -56.   71.   71.][-120. -120.  135.  135.][-248. -248.  263.  263.][ -36.  -80.   51.   95.][ -80. -168.   95.  183.][-168. -344.  183.  359.]]

  

其中每行的4个值[x1,y1,x2,y2]代表矩形左上和右下角点坐标。9个矩形共有3种形状,长宽比为大约为:width:height = [1:1, 1:2, 2:1]三种,如图6。实际上通过anchors就引入了检测中常用到的多尺度方法。

图6 anchors示意图

注:关于上面的anchors size,其实是根据检测图像设置的。在python demo中,会把任意大小的输入图像reshape成800x600(即图2中的M=800,N=600)。再回头来看anchors的大小,anchors中长宽1:2中最大为352x704,长宽2:1中最大736x384,基本是cover了800x600的各个尺度和形状。

那么这9个anchors是做什么的呢?借用Faster RCNN论文中的原图,如图7,遍历Conv layers计算获得的feature maps,为每一个点都配备这9种anchors作为初始的检测框。这样做获得检测框很不准确,不用担心,后面还有2次bounding box regression可以修正检测框位置。

图7

解释一下上面这张图的数字。

  1. 在原文中使用的是ZF model中,其Conv Layers中最后的conv5层num_output=256,对应生成256张特征图,所以相当于feature map每个点都是256-d
  2. 在conv5之后,做了rpn_conv/3x3卷积且num_output=256,相当于每个点又融合了周围3x3的空间信息(猜测这样做也许更鲁棒?反正我没测试),同时256-d不变(如图4和图7中的红框)
  3. 假设在conv5 feature map中每个点上有k个anchor(默认k=9),而每个anhcor要分foreground和background,所以每个点由256d feature转化为cls=2k scores;而每个anchor都有[x, y, w, h]对应4个偏移量,所以reg=4k coordinates
  4. 补充一点,全部anchors拿去训练太多了,训练程序会在合适的anchors中随机选取128个postive anchors+128个negative anchors进行训练(什么是合适的anchors下文5.1有解释)

注意,在本文讲解中使用的VGG conv5 num_output=512,所以是512d,其他类似.....

2.3 softmax判定foreground与background

 

缩进一副MxN大小的矩阵送入Faster RCNN网络后,到RPN网络变为(M/16)x(N/16),不妨设W=M/16,H=N/16。在进入reshape与softmax之前,先做了1x1卷积,如图8:
图8 RPN中判定fg/bg网络结构
该1x1卷积的caffe prototxt定义如下:
layer {name: "rpn_cls_score"type: "Convolution"bottom: "rpn/output"top: "rpn_cls_score"convolution_param {num_output: 18   # 2(bg/fg) * 9(anchors)kernel_size: 1 pad: 0 stride: 1}
}

  

可以看到其num_output=18,也就是经过该卷积的输出图像为WxHx18大小(注意第二章开头提到的卷积计算方式)。这也就刚好对应了feature maps每一个点都有9个anchors,同时每个anchors又有可能是foreground和background,所有这些信息都保存WxHx(9x2)大小的矩阵。为何这样做?后面接softmax分类获得foreground anchors,也就相当于初步提取了检测目标候选区域box(一般认为目标在foreground anchors中)。
缩进那么为何要在softmax前后都接一个reshape layer?其实只是为了便于softmax分类,至于具体原因这就要从caffe的实现形式说起了。在caffe基本数据结构blob中以如下形式保存数据:
blob=[batch_size, channel,height,width]
对应至上面的保存bg/fg anchors的矩阵,其在caffe blob中的存储形式为[1, 2*9, H, W]。而在softmax分类时需要进行fg/bg二分类,所以reshape layer会将其变为[1, 2, 9*H, W]大小,即单独“腾空”出来一个维度以便softmax分类,之后再reshape回复原状。贴一段caffe softmax_loss_layer.cpp的reshape函数的解释,非常精辟:
"Number of labels must match number of predictions; "
"e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
"label count (number of labels) must be N*H*W, "
"with integer values in {0, 1, ..., C-1}.";

  

综上所述,RPN网络中利用anchors和softmax初步提取出foreground anchors作为候选区域。

2.4 bounding box regression原理

缩进介绍bounding box regression数学模型及原理。如图9所示绿色框为飞机的Ground Truth(GT),红色为提取的foreground anchors,那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准,这张图相当于没有正确的检测出飞机。所以我们希望采用一种方法对红色的框进行微调,使得foreground anchors和GT更加接近。

图9

缩进对于窗口一般使用四维向量(x, y, w, h)表示,分别表示窗口的中心点坐标和宽高。对于图 10,红色的框A代表原始的Foreground Anchors,绿色的框G代表目标的GT,我们的目标是寻找一种关系,使得输入原始的anchor A经过映射得到一个跟真实窗口G更接近的回归窗口G',即:给定anchor A=(Ax, Ay, Aw, Ah),GT=[Gx, Gy, Gw, Gh],寻找一种变换F:使得F(Ax, Ay, Aw, Ah)=(G'x, G'y, G'w, G'h),其中(G'x, G'y, G'w, G'h)≈(Gx, Gy, Gw, Gh)。

图10

那么经过何种变换F才能从图6中的anchor A变为G'呢? 比较简单的思路就是:

缩进 1. 先做平移

缩进 2. 再做缩放

缩进观察上面4个公式发现,需要学习的是dx(A),dy(A),dw(A),dh(A)这四个变换。当输入的anchor A与GT相差较小时,可以认为这种变换是一种线性变换, 那么就可以用线性回归来建模对窗口进行微调(注意,只有当anchors A和GT比较接近时,才能使用线性回归模型,否则就是复杂的非线性问题了)。对应于Faster RCNN原文,平移量(tx, ty)与尺度因子(tw, th)如下:

缩进接下来的问题就是如何通过线性回归获得dx(A),dy(A),dw(A),dh(A)了。线性回归就是给定输入的特征向量X, 学习一组参数W, 使得经过线性回归后的值跟真实值Y非常接近,即Y=WX。对于该问题,输入X是一张经过卷积获得的feature map,定义为Φ;同时还有训练传入的GT,即(tx, ty, tw, th)。输出是dx(A),dy(A),dw(A),dh(A)四个变换。那么目标函数可以表示为:

其中Φ(A)是对应anchor的feature map组成的特征向量,w是需要学习的参数,d(A)是得到的预测值(*表示 x,y,w,h,也就是每一个变换对应一个上述目标函数)。为了让预测值(tx, ty, tw, th)与真实值差距最小,设计损失函数:

函数优化目标为:

2.5 对proposals进行bounding box regression

缩进在了解bounding box regression后,再回头来看RPN网络第二条线路,如图11。

 

图11 RPN中的bbox reg

先来看一看上图11中1x1卷积的caffe prototxt定义:

layer {name: "rpn_bbox_pred"type: "Convolution"bottom: "rpn/output"top: "rpn_bbox_pred"convolution_param {num_output: 36   # 4 * 9(anchors)kernel_size: 1 pad: 0 stride: 1}
}

  

可以看到其num_output=36,即经过该卷积输出图像为WxHx36,在caffe blob存储为[1, 36, H, W],这里相当于feature maps每个点都有9个anchors,每个anchors又都有4个用于回归的[dx(A),dy(A),dw(A),dh(A)]变换量。

2.6 Proposal Layer

缩进Proposal Layer负责综合所有[dx(A),dy(A),dw(A),dh(A)]变换量和foreground anchors,计算出精准的proposal,送入后续RoI Pooling Layer。还是先来看看Proposal Layer的caffe prototxt定义:
layer {name: 'proposal'type: 'Python'bottom: 'rpn_cls_prob_reshape'bottom: 'rpn_bbox_pred'bottom: 'im_info'top: 'rois'python_param {module: 'rpn.proposal_layer'layer: 'ProposalLayer'param_str: "'feat_stride': 16"}
}

  

Proposal Layer有3个输入:fg/bg anchors分类器结果rpn_cls_prob_reshape,对应的bbox reg的[dx(A),dy(A),dw(A),dh(A)]变换量rpn_bbox_pred,以及im_info;另外还有参数feat_stride=16,这和图4是对应的。
缩进首先解释im_info。对于一副任意大小PxQ图像,传入Faster RCNN前首先reshape到固定MxN,im_info=[M, N, scale_factor]则保存了此次缩放的所有信息。然后经过Conv Layers,经过4次pooling变为WxH=(M/16)x(N/16)大小,其中feature_stride=16则保存了该信息,用于计算anchor偏移量。
图12
缩进Proposal Layer forward(caffe layer的前传函数)按照以下顺序依次处理:
  1. 生成anchors,利用[dx(A),dy(A),dw(A),dh(A)]对所有的anchors做bbox regression回归(这里的anchors生成和训练时完全一致)
  2. 按照输入的foreground softmax scores由大到小排序anchors,提取前pre_nms_topN(e.g. 6000)个anchors,即提取修正位置后的foreground anchors。
  3. 利用im_info将fg anchors从MxN尺度映射回PxQ原图,判断fg anchors是否大范围超过边界,剔除严重超出边界fg anchors。
  4. 进行nms(nonmaximum suppression,非极大值抑制)
  5. 再次按照nms后的foreground softmax scores由大到小排序fg anchors,提取前post_nms_topN(e.g. 300)结果作为proposal输出。
之后输出proposal=[x1, y1, x2, y2],注意,由于在第三步中将anchors映射回原图判断是否超出边界,所以这里输出的proposal是对应MxN输入图像尺度的,这点在后续网络中有用。另外我认为,严格意义上的检测应该到此就结束了,后续部分应该属于识别了~
RPN网络结构就介绍到这里,总结起来就是:
生成anchors -> softmax分类器提取fg anchors -> bbox reg回归fg anchors -> Proposal Layer生成proposals

3 RoI pooling

缩进而RoI Pooling层则负责收集proposal,并计算出proposal feature maps,送入后续网络。从图3中可以看到Rol pooling层有2个输入:

  1. 原始的feature maps
  2. RPN输出的proposal boxes(大小各不相同)

3.1 为何需要RoI Pooling

缩进先来看一个问题:对于传统的CNN(如AlexNet,VGG),当网络训练好后输入的图像尺寸必须是固定值,同时网络输出也是固定大小的vector or matrix。如果输入图像大小不定,这个问题就变得比较麻烦。有2种解决办法:

  1. 从图像中crop一部分传入网络
  2. 将图像warp成需要的大小后传入网络

图13 crop与warp破坏图像原有结构信息

两种办法的示意图如图13,可以看到无论采取那种办法都不好,要么crop后破坏了图像的完整结构,要么warp破坏了图像原始形状信息。回忆RPN网络生成的proposals的方法:对foreground anchors进行bound box regression,那么这样获得的proposals也是大小形状各不相同,即也存在上述问题。所以Faster RCNN中提出了RoI Pooling解决这个问题(需要说明,RoI Pooling确实是从SPP发展而来,但是限于篇幅这里略去不讲,有兴趣的读者可以自行查阅相关论文)。

3.2 RoI Pooling原理

缩进分析之前先来看看RoI Pooling Layer的caffe prototxt的定义:

layer {name: "roi_pool5"type: "ROIPooling"bottom: "conv5_3"bottom: "rois"top: "pool5"roi_pooling_param {pooled_w: 7pooled_h: 7spatial_scale: 0.0625 # 1/16}
}

  

其中有新参数pooled_w=pooled_h=7,另外一个参数spatial_scale=1/16应该能够猜出大概吧。

缩进RoI Pooling layer forward过程:在之前有明确提到:proposal=[x1, y1, x2, y2]是对应MxN尺度的,所以首先使用spatial_scale参数将其映射回(M/16)x(N/16)大小的feature maps尺度(这里来回多次映射,是有点绕);之后将每个proposal水平和竖直都分为7份,对每一份都进行max pooling处理。这样处理后,即使大小不同的proposal,输出结果都是7x7大小,实现了fixed-length output(固定长度输出)。

 

图14 proposal示意图

 

4 Classification

缩进Classification部分利用已经获得的proposal feature maps,通过full connect层与softmax计算每个proposal具体属于那个类别(如人,车,电视等),输出cls_prob概率向量;同时再次利用bounding box regression获得每个proposal的位置偏移量bbox_pred,用于回归更加精确的目标检测框。Classification部分网络结构如图15。
图15 Classification部分网络结构图

从PoI Pooling获取到7x7=49大小的proposal feature maps后,送入后续网络,可以看到做了如下2件事:

  1. 通过全连接和softmax对proposals进行分类,这实际上已经是识别的范畴了
  2. 再次对proposals进行bounding box regression,获取更高精度的rect box
这里来看看全连接层InnerProduct layers,简单的示意图如图16,

图16 全连接层示意图

其计算公式如下:

其中W和bias B都是预先训练好的,即大小是固定的,当然输入X和输出Y也就是固定大小。所以,这也就印证了之前Roi Pooling的必要性。到这里,我想其他内容已经很容易理解,不在赘述了。

5 Faster RCNN训练

缩进Faster CNN的训练,是在已经训练好的model(如VGG_CNN_M_1024,VGG,ZF)的基础上继续进行训练。实际中训练过程分为6个步骤:
  1. 在已经训练好的model上,训练RPN网络,对应stage1_rpn_train.pt
  2. 利用步骤1中训练好的RPN网络,收集proposals,对应rpn_test.pt
  3. 第一次训练Fast RCNN网络,对应stage1_fast_rcnn_train.pt
  4. 第二训练RPN网络,对应stage2_rpn_train.pt
  5. 再次利用步骤4中训练好的RPN网络,收集proposals,对应rpn_test.pt
  6. 第二次训练Fast RCNN网络,对应stage2_fast_rcnn_train.pt

可以看到训练过程类似于一种“迭代”的过程,不过只循环了2次。至于只循环了2次的原因是应为作者提到:"A similar alternating training can be run for more iterations, but we have observed negligible improvements",即循环更多次没有提升了。接下来本章以上述6个步骤讲解训练过程。

5.1 训练RPN网络

缩进在该步骤中,首先读取RBG提供的预训练好的model(本文使用VGG),开始迭代训练。来看看stage1_rpn_train.pt网络结构,如图17。

图17 stage1_rpn_train.pt

(考虑图片大小,Conv Layers中所有的层都画在一起了,如红圈所示,后续图都如此处理)

与检测网络类似的是,依然使用Conv Layers提取feature maps。整个网络使用的Loss如下:

上述公式中,i表示anchors index,pi表示foreground softmax predict概率,pi*代表对应的GT predict概率(即当第i个anchor与GT间IoU>0.7,认为是该anchor是foreground,pi*=1;反之IoU<0.3时,认为是该anchor是background,pi*=0;至于那些0.3<IoU<0.7的anchor则不参与训练);t代表predict bounding box,t*代表对应foreground anchor对应的GT box。可以看到,整个Loss分为2部分:

  1. cls loss,即rpn_cls_loss层计算的softmax loss,用于分类anchors为forground与background的网络训练
  2. reg loss,即rpn_loss_bbox层计算的soomth L1 loss,用于bounding box regression网络训练。注意在该loss中乘了pi*,相当于只关心foreground anchors的回归(其实在回归中也完全没必要去关心background)。

缩进由于在实际过程中,Ncls和Nreg差距过大,用参数λ平衡二者(如Ncls=256,Nreg=2400时设置λ=10),使总的网络Loss计算过程中能够均匀考虑2种Loss。这里比较重要是Lreg使用的soomth L1 loss,计算公式如下:

缩进了解数学原理后,反过来看图17:

  1. 在RPN训练阶段,rpn-data(python AnchorTargetLayer)层会按照和test阶段Proposal层完全一样的方式生成Anchors用于训练
  2. 对于rpn_loss_cls,输入的rpn_cls_scors_reshape和rpn_labels分别对应p与p*,Ncls参数隐含在p与p*的caffe blob的大小中
  3. 对于rpn_loss_bbox,输入的rpn_bbox_pred和rpn_bbox_targets分别对应t于t*,rpn_bbox_inside_weigths对应p*,rpn_bbox_outside_weights对应λ,Nreg同样隐含在caffe blob大小中

这样,公式与代码就完全对应了。特别需要注意的是,在训练和检测阶段生成和存储anchors的顺序完全一样,这样训练结果才能被用于检测!

5.2 通过训练好的RPN网络收集proposals

缩进在该步骤中,利用之前的RPN网络,获取proposal rois,同时获取foreground softmax probability,如图18,然后将获取的信息保存在python pickle文件中。该网络本质上和检测中的RPN网络一样,没有什么区别。

图18 rpn_test.pt

5.3 训练Fast RCNN网络

缩进读取之前保存的pickle文件,获取proposals与foreground probability。从data层输入网络。然后:

  1. 将提取的proposals作为rois传入网络,如图19蓝框
  2. 将foreground probability作为bbox_inside_weights传入网络,如图19绿框
  3. 通过caffe blob大小对比,计算出bbox_outside_weights(即λ),如图19绿框

这样就可以训练最后的识别softmax与最终的bounding regression了,如图19。

图19 stage1_fast_rcnn_train.pt

之后的训练都是大同小异,不再赘述了。

 

PS:我知道你们想问,画图工具:http://ethereon.github.io/netscope/#/editor

 

--------------------------------------------------------------------------

Faster RCNN的分析就结束了,之后会缓慢更新YOLO,YOLO V2,SSD,Mask RCNN等内容,敬请期待~

转载于:https://www.cnblogs.com/wlzy/p/9432830.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/451019.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

狗窝里的小日子- 8 ...

来&#xff0c;把平时作的菜菜整理下&#xff1a; 81. 82. 83. 84. 85. 86. 87. 88.

【模式识别与机器学习】——3.9势函数法:一种确定性的非线性分类方法

目的 用势函数的概念来确定判别函数和划分类别界面。 基本思想 假设要划分属于两种类别ω1和ω2的模式样本&#xff0c;这些样本可看成是分布在n维模式空间中的点xk。 把属于ω1的点比拟为某种能源点&#xff0c;在点上&#xff0c;电位达到峰值。 随着与该点距离的增大&a…

超详细 - SVN下载安装及使用教程

SVN简介&#xff1a; 为什么要使用SVN&#xff1f; 程序员在编写程序的过程中&#xff0c;每个程序员都会生成很多不同的版本&#xff0c;这就需要程序员有效的管理代码&#xff0c;在需要的时候可以迅速&#xff0c;准确取出相应的版本。 Subversion是什么&#xff1f; 它是一…

docker 中不能用vim编辑文件

2019独角兽企业重金招聘Python工程师标准>>> docker 中不能用vim编辑文件 2017年08月28日 16:54:29 阅读数&#xff1a;2061 更新来源 apt-get update 1安装vim apt-get install -y vim 转载于:https://my.oschina.net/u/3367404/blog/1923901

洛谷 2759 奇怪的函数

【题解】 取个对数然后二分即可。对于一个数x&#xff0c;x^x的位数就是(int)(lg(x)*x1). 1 #include<cstdio>2 #include<cstring>3 #include<algorithm>4 #include<cmath>5 #define LL long long6 #define rg register7 #define N 2000108 using name…

IPv6 解说 ,与IPv4的同异

见&#xff1a;https://baike.baidu.com/item/IPv6/172297 IPv6 IPv6是Internet Protocol Version 6的缩写&#xff0c;其中Internet Protocol译为“互联网协议”。IPv6是IETF&#xff08;互联网工程任务组&#xff0c;Internet Engineering Task Force&#xff09;设计的用于替…

个推应用统计产品(个数)Android集成实践

2019独角兽企业重金招聘Python工程师标准>>> 前段时间&#xff0c;我们公司的产品又双叒叕给我们提了新需求&#xff0c;要求我们把APP相关的数据统计分析一下&#xff0c;这些指标包括但不限于应用每日的新增、活跃、留存率等等&#xff0c;最好每天都能提供数据报…

JVM对象占用内存计算

大家都知道&#xff0c;jvm中对象实例存储在堆中&#xff0c;对象的引用存储在栈中&#xff0c;而对象的元数据(类型数据)存储在方法区。在我们进行内存优化的过程中经常需要了解每个对象占用的内存大小。接下来我将介绍对象占用内存大小的计算方式。 Java的对象模型 java是面…

MyEclipse 皮肤、主题、背景色

第一步&#xff1a;打开myeclipse--->help--->install from site--->Add将路径粘贴在这里。等待安装颜色主题。https://raw.github.com/guari/eclipse-ui-theme/master/com.github.eclipseuitheme.themes.updatesite 第二步&#xff1a;http://eclipsecolorthemes.org…

RPC 远程过程调用协议

RPC&#xff08;Remote Procedure Call Protocol&#xff09;——远程过程调用协议&#xff0c;它是一种通过网络从远程计算机程序上请求服务&#xff0c;而不需要了解底层网络技术的协议。 RPC协议假定某些传输协议的存在&#xff0c;如TCP或UDP&#xff0c;为通信程序之间携…

SOA (面向服务的架构)

见&#xff1a;https://baike.baidu.com/item/SOA/2140650?fraladdin UDDI 解说参见&#xff1a;UDDI是什么 SOAP解说参见&#xff1a; SOAP:简单对象访问协议 面向服务的架构&#xff08;SOA&#xff09;是一个组件模型&#xff0c;它将应用程序的不同功能单元&#xff08;称…

[cerc2012][Gym100624B]20181013

转载于:https://www.cnblogs.com/KonjakJuruo/p/9809637.html

Nginx服务器证书部署-亚洲诚信

Nginx服务器证书部署发布时间&#xff1a;2018-01-17 16:15:25依赖建议l SSL卸载驱动。建议&#xff1a;openssl版本1.1.0f。l nginx版本Stable version&#xff1a;最新稳定版&#xff0c;生产环境上建议使用的版本。获取证书MPKI方式&#xff1a;1. 登录https://mpki.tru…

用反卷积(Deconvnet)可视化理解卷积神经网络还有使用tensorboard

『cs231n』卷积神经网络的可视化与进一步理解 深度学习小白——卷积神经网络可视化&#xff08;二&#xff09; TensorBoard--TensorFlow可视化 原文地址&#xff1a;http://blog.csdn.net/hjimce/article/details/50544370 作者&#xff1a;hjimce 一、相关理论 本篇博文主要讲…

不怕烧钱怕翻车:雷军与马化腾现场“过招”

说起微信&#xff0c;很多时尚潮人都很熟悉。这款软件可以发送语音信息、可以在有无线网络的地方免费发送、甚至只需摇一摇就能找到在你附近的用户&#xff0c;这些方便、时尚、新颖的元素使微信受到了很多用户的喜爱&#xff0c;也夺得了大量的市场。其实&#xff0c;在微信发…

Thread.yield()和Thread.sleep(0)

关于Thread.yield()和Thread.sleep(0)的语义问题真是一个让人挠头的问题&#xff0c;翻了好多资料&#xff0c;在java6语言规范中看到了一段这样的描述&#xff1a; 重点在红框中&#xff0c;简而言之就是&#xff1a;sleep(0)和yield()的实现不需要任何可见的效果。那么在实现…

DCT原型 ——傅里叶级数

傅里叶级数 法国数学家傅里叶发现&#xff0c;任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示&#xff08;选择正弦函数与余弦函数作为基函数是因为它们是正交的&#xff09;&#xff0c;后世称为傅里叶级数&#xff08;法语&#xff1a;srie de Fourier&#xf…

红黑树和B+树

&#xff08;一&#xff09;红黑树 红黑树是一种自平衡二叉查找树&#xff0c;也被称为"对称二叉B树"&#xff0c;它可以在O(logn)时间内利用 O(logn)的空间来完成查找、插入、删除操作。红黑树的读操作与普通二叉查找树相同&#xff0c;而插入和删除操作可能会破坏…

策略模式、观察者模式、代理模式、装饰模式 应用场景和实现

有个大神写的很好&#xff1a; 参考&#xff1a;设计模式学习笔记&#xff08;四&#xff1a;策略模式&#xff09; 参考&#xff1a;设计模式学习笔记&#xff08;二&#xff1a;观察者模式&#xff09; 参考&#xff1a;设计模式学习笔记-代理模式 参考&#xff1a;设计模式-…

李国杰院士:国内开源社区的崛起需要一个过程

[CSDN.NET 付江/文]日前&#xff0c;在第二届“龙芯杯”中国开源软件设计大赛启动仪式上&#xff0c;CSDN记者专访了中国工程院院士、第三世界科学院院士李国杰。李国杰院士就国产基础软件现状、面临的机遇和挑战、开源环境以及生态系统建设等话题分享了自己的看法。 打造自主…