【OpenVINOSharp】在英特尔® 开发者套件爱克斯开发板使用OpenVinoSharp部署Yolov8模型

在英特尔® 开发者套件爱克斯开发板使用OpenVinoSharp部署Yolov8模型

    • 一、英特尔开发套件 AIxBoard 介绍
      • 1. 产品定位
      • 2. 产品参数
      • 3. AI推理单元
    • 二、配置 .NET 环境
      • 1. 添加 Microsoft 包存储库
      • 2. 安装 SDK
      • 3. 测试安装
      • 4. 测试控制台项目
    • 三、安装 OpenVINO Runtime
      • 1. 下载 OpenVINO Runtime
      • 2. 解压安装包
      • 3. 安装依赖
      • 4. 配置环境变量
    • 四、配置 AlxBoard_deploy_yolov8 项目
      • 1. 创建 AlxBoard_deploy_yolov8 项目
      • 2. 添加 OpenVINOSharp 依赖
      • 3. 添加OpenCvSharp
    • 五、运行AlxBoard_deploy_yolov8 项目
      • 1. 编译运行 Yolov8-det 模型
      • 2. 编译运行 Yolov8-cls 模型
      • 3. 编译运行 Yolov8-pose 模型
      • 4. 编译运行 Yolov8-seg 模型
    • 六、模型运行时间
    • 七、总结

  英特尔发行版 OpenVINO™工具套件基于oneAPI 而开发,可以加快高性能计算机视觉和深度学习视觉应用开发速度工具套件,适用于从边缘到云的各种英特尔平台上,帮助用户更快地将更准确的真实世界结果部署到生产系统中。通过简化的开发工作流程, OpenVINO™可赋能开发者在现实世界中部署高性能应用程序和算法。

  C#是由C和C++衍生出来的一种安全的、稳定的、简单的、优雅的面向对象编程语言。C#综合了VB简单的可视化操作和C++的高运行效率,以其强大的操作能力、优雅的语法风格、创新的语言特性和便捷的面向组件编程的支持成为.NET开发的首选语言。然而 OpenVINO™未提供C#语言接口,这对在C#中使用 OpenVINO™带来了很多麻烦,在之前的工作中,我们推出了OpenVinoSharp,旨在推动 OpenVINO™在C#领域的应用,目前已经成功在Window平台实现使用。在本文中,我们将介绍如何在 AIxBoard开发板上基于Linux系统实现OpenVinoSharp。

  项目中所使用的代码已上传至OpenVinoSharp仓库中,GitHub网址为:

https://github.com/guojin-yan/OpenVINOSharp/blob/openvinosharp3.0/tutorial_examples/AlxBoard_deploy_yolov8/Program.cs

  技术文档首发网址:在英特尔® 开发者套件上使用 OpenVINOSharp 部署 YOLOv8 模型 | 开发者实战

一、英特尔开发套件 AIxBoard 介绍

1. 产品定位

  英特尔开发套件 AIxBoard(爱克斯板)是英特尔开发套件官方序列中的一员,专为入门级人工智能应用和边缘智能设备而设计。爱克斯板能完美胜人工智能学习、开发、实训、应用等不同应用场景。该套件预装了英特尔OpenVINO™工具套件、模型仓库和演示案例,便于您轻松快捷地开始应用开发。

  套件主要接口与Jetson Nano载板兼容,GPIO与树莓派兼容,能够最大限度地复用成熟的生态资源。这使得套件能够作为边缘计算引擎,为人工智能产品验证和开发提供强大支持;同时,也可以作为域控核心,为机器人产品开发提供技术支撑。

  使用AIxBoard(爱克斯板)开发套件,您将能够在短时间内构建出一个出色的人工智能应用应用程序。无论是用于科研、教育还是商业领域,爱克斯板都能为您提供良好的支持。借助 OpenVINO™ 工具套件,CPU、iGPU 都具备强劲的 AI 推理能力,支持在图像分类、目标检测、分割和语音处理等应用中并行运行多个神经网络。

2. 产品参数

主控英特尔赛扬N5105 2.0-2.9GHz (formerly Jasper Lake)
内存板载LPDDR4x 2933MHz, 4GB/6GB/8GB
存储板载 64GB eMMC存储
存储扩展1个M.2 Key-M 2242扩展槽, 支持SATA&NVME协议
BIOSAMI UEFI BIOS
系统支持Ubuntu20.04 LTS
Winodws 10/11

3. AI推理单元

  借助OpenVINO工具,能够实现CPU+iGPU异构计算推理,IGPU算力约为0.6TOPS

CPUINT8/FP16/FP32
iGPUINT8/FP16 0.6TOPS
GNA高斯及神经加速器

二、配置 .NET 环境

  .NET 是一个免费的跨平台开源开发人员平台 ,用于构建多种应用程序。下面将演示 AIxBoard 如何在 Ubuntu 20.04 上安装 .NET环境,支持 .NET Core 2.0-3.1 系列 以及.NET 5-8 系列 ,如果你的 AIxBoard 使用的是其他Linux系统,你可以参考在 Linux 发行版上安装 .NET - .NET | Microsoft Learn。

1. 添加 Microsoft 包存储库

  使用 APT 进行安装可通过几个命令来完成。 安装 .NET 之前,请运行以下命令,将 Microsoft 包签名密钥添加到受信任密钥列表,并添加包存储库。

  打开终端并运行以下命令:

wget https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb -O packages-microsoft-prod.deb
sudo dpkg -i packages-microsoft-prod.deb
rm packages-microsoft-prod.deb

  下图为输入上面命令后控制台的输出:

2. 安装 SDK

  .NET SDK 使你可以通过 .NET 开发应用。 如果安装 .NET SDK,则无需安装相应的运行时。 若要安装 .NET SDK,请运行以下命令:

sudo apt-get update
sudo apt-get install -y dotnet-sdk-3.1

  下图为安装后控制台的输出:

3. 测试安装

  通过命令行可以检查 SDK 版本以及Runtime时版本。

dotnet --list-sdks
dotnet --list-runtimes

  下图为输入测试命令后控制台的输出:

4. 测试控制台项目

  在linux环境下,我们可以通过dotnet命令来创建和编译项目,项目创建命令为:

dotnet new <project_type> -o <project name>

  此处我们创建一个简单测试控制台项目:

dotnet new console -o test_net6.0
cd test_net6.0
dotnet run

  下图为输入测试命令后控制台的输出以及项目文件夹文件情况,C#项目会自动创建一个Program.cs程序文件,里面包含了程序运行入口主函数,同时还会创建一个***.csproj**文件,负责指定项目编译中的一些配置。

  以上就是.NET环境的配置步骤,如果你的环境与本文不匹配,可以通过.NET 文档 | Microsoft Learn 获取更多安装步骤。

三、安装 OpenVINO Runtime

  OpenVINO™ 有两种安装方式: OpenVINO Runtime和OpenVINO Development Tools。OpenVINO Runtime包含用于在处理器设备上运行模型部署推理的核心库。OpenVINO Development Tools是一组用于处理OpenVINO和OpenVINO模型的工具,包括模型优化器、OpenVINO Runtime、模型下载器等。在此处我们只需要安装OpenVINO Runtime即可。

1. 下载 OpenVINO Runtime

  访问Download the Intel Distribution of OpenVINO Toolkit页面,按照下面流程选择相应的安装选项,在下载页面,由于我们的设备使用的是Ubuntu20.04,因此下载时按照指定的编译版本下载即可。

2. 解压安装包

  我们所下载的 OpenVINO Runtime 本质是一个C++依赖包,因此我们把它放到我们的系统目录下,这样在编译时会根据设置的系统变量获取依赖项。首先在系统文件夹下创建一个文件夹:

sudo mkdir -p /opt/intel

  然后解压缩我们下载的安装文件,并将其移动到指定文件夹下:

tar -xvzf l_openvino_toolkit_ubuntu20_2023.0.1.11005.fa1c41994f3_x86_64.tgz
sudo mv l_openvino_toolkit_ubuntu20_2023.0.1.11005.fa1c41994f3_x86_64 /opt/intel/openvino_2022.3.0

3. 安装依赖

  接下来我们需要安装 OpenVINO Runtime 所许雅的依赖项,通过命令行输入以下命令即可:

cd /opt/intel/openvino_2022.3.0/
sudo -E ./install_dependencies/install_openvino_dependencies.sh

4. 配置环境变量

  安装完成后,我们需要配置环境变量,以保证在调用时系统可以获取对应的文件,通过命令行输入以下命令即可:

source /opt/intel/openvino_2022.3.0/setupvars.sh

  以上就是 OpenVINO Runtime 环境的配置步骤,如果你的环境与本文不匹配,可以通过Install OpenVINO™ Runtime — OpenVINO™ documentation — Version(2023.0)获取更多安装步骤。

四、配置 AlxBoard_deploy_yolov8 项目

  项目中所使用的代码已经放在GitHub仓库AlxBoard_deploy_yolov8,大家可以根据情况自行下载和使用,下面我将会从头开始一步步构建AlxBoard_deploy_yolov8项目。

1. 创建 AlxBoard_deploy_yolov8 项目

  在该项目中,我们需要使用OpenCvSharp,该依赖目前在Ubutun平台最高可以支持.NET Core 3.1,因此我们此处创建一个.NET Core 3.1的项目,使用Terminal输入以下指令创建并打开项目文件:

dotnet new console --framework "netcoreapp3.1" -o AlxBoard_deploy_yolov8
cd AlxBoard_deploy_yolov8

  创建完项目后,将AlxBoard_deploy_yolov8的代码内容替换到创建的项目中的Program.cs文件中.

2. 添加 OpenVINOSharp 依赖

  由于OpenVINOSharp 当前正处于开发阶段,还未创建Linux版本的NuGet Package,因此需要通过下载项目源码以项目引用的方式使用。

  • 下载源码

    通过Git下载项目源码,新建一个Terminal,并输入以下命令克隆远程仓库,将该项目放置在AlxBoard_deploy_yolov8同级目录下。

    git clone https://github.com/guojin-yan/OpenVINOSharp.git
    cd OpenVINOSharp
    

    本文的项目目录为:

    Program--|-AlxBoard_deploy_yolov8|-OpenVINOSharp
    
  • 修改OpenVINO™ 依赖

    由于项目源码的OpenVINO™ 依赖与本文设置不同,因此需要修改OpenVINO™ 依赖项的路径,主要通过修改OpenVINOSharp/src/OpenVINOSharp/native_methods/ov_base.cs文件即可,修改内容如下:

    private const string dll_extern = "./openvino2023.0/openvino_c.dll";
    ---修改为--->
    private const string dll_extern = "libopenvino_c.so";
    
  • 添加项目依赖

    在Terminal输入以下命令,即可将OpenVINOSharp添加到AlxBoard_deploy_yolov8项目引用中。

    dotnet add reference ./../OpenVINOSharp/src/OpenVINOSharp/OpenVINOSharp.csproj
    
  • 添加环境变量

    该项目需要调用OpenVINO™动态链接库,因此需要在当前环境下增加OpenVINO™动态链接库路径:

    export LD_LIBRARY_PATH=/opt/intel/openvino_2023.0/runtime/lib/intel64
    

3. 添加OpenCvSharp

  • 安装NuGet Package

    OpenCvSharp可以通过NuGet Package安装,只需要在Terminal输入以下命令:

    dotnet add package OpenCvSharp4_.runtime.ubuntu.20.04-x64
    dotnet add package OpenCvSharp4
    
  • 添加环境变量

    将以下路径添加到环境变量中:

    export LD_LIBRARY_PATH=/home/ygj/Program/OpenVINOSharp/tutorial_examples/AlxBoard_deploy_yolov8/bin/Debug/netcoreapp3.1/runtimes/ubuntu.20.04-x64/native
    

    /bin/Debug/netcoreapp3.1/runtimes/ubuntu.20.04-x64/native是AlxBoard_deploy_yolov8编译后生成的路径,该路径下存放了libOpenCvSharpExtern.so文件,该文件主要是封装的OpenCV中的各种接口。也可以将该文件拷贝到项目运行路径下。

  • 检测libOpenCvSharpExtern依赖

    由于libOpenCvSharpExtern.so是在其他环境下编译好的动态链接库,本机电脑可能会缺少相应的依赖,因此可以通过ldd命令检测。

    ldd libOpenCvSharpExtern.so
    

    如果输出内容中没有no found的,说明不缺少依赖,如果存在,则需要安装缺少的依赖项才可以正常使用。

  添加完项目依赖以及NuGet Package后,项目的配置文件内容为:

<Project Sdk="Microsoft.NET.Sdk"><ItemGroup><ProjectReference Include="..\OpenVINOSharp\src\OpenVINOSharp\OpenVINOSharp.csproj" /></ItemGroup><ItemGroup><PackageReference Include="OpenCvSharp4" Version="4.8.0.20230708" /><PackageReference Include="OpenCvSharp4_.runtime.ubuntu.20.04-x64" Version="4.8.0.20230708" /></ItemGroup><PropertyGroup><OutputType>Exe</OutputType><TargetFramework>netcoreapp3.1</TargetFramework></PropertyGroup></Project>

五、运行AlxBoard_deploy_yolov8 项目

​ 该项目测试所使用的模型与文件都可以在OpenVINOSharp中找到,因此下面我们通过OpenVINOSharp 仓库下的模型与文件进行测试。

  通过dotnet运行,只需要运行以下命令即可

dotnet run <args>

<args>参数设指的是模型预测类型、模型路径、图片文件路径参数,预测类型输入包括: ‘det’、‘seg’、‘pose’、‘cls’ 四种类型;默认推理设备设置为’AUTO’,对于’det’、'seg’预测,可以设置<path_to_lable>参数,如果设置该参数,会将结果绘制到图片上,如果未设置,会通过控制台打印出来

1. 编译运行 Yolov8-det 模型

编译运行命令为:

dotnet run det /home/ygj/Program/OpenVINOSharp/model/yolov8/yolov8s.xml /home/ygj/Program/OpenVINOSharp/dataset/image/demo_2.jpg GPU.0 /home/ygj/Program/OpenVINOSharp/dataset/lable/COCO_lable.txt

模型推理输出结果为:

---- OpenVINO INFO----
Description : OpenVINO Runtime
Build number: 2023.0.1-11005-fa1c41994f3-releases/2023/0
Set inference device  GPU.0.
[INFO] Loading model files: /home/ygj/Program/OpenVINOSharp/model/yolov8/yolov8s.xml
[INFO] model name: torch_jit
[INFO]    inputs:
[INFO]      input name: images
[INFO]      input type: f32
[INFO]      input shape: Shape : [1, 3, 640, 640]
[INFO]    outputs:
[INFO]      output name: output0
[INFO]      output type: f32
[INFO]      output shape: Shape : [1, 84, 8400]
[INFO] Read image  files: /home/ygj/Program/OpenVINOSharp/dataset/image/demo_2.jpgDetection  result : 1: 0 0.89   (x:744 y:43 width:388 height:667)
2: 0 0.88   (x:149 y:202 width:954 height:507)
3: 27 0.72   (x:435 y:433 width:98 height:284)

2. 编译运行 Yolov8-cls 模型

编译运行命令为:

dotnet run cls /home/ygj/Program/OpenVINOSharp/model/yolov8/yolov8s-cls.xml /home/ygj/Program/OpenVINOSharp/dataset/image/demo_7.jpg GPU.0

模型推理输出结果为:

---- OpenVINO INFO----
Description : OpenVINO Runtime
Build number: 2023.0.1-11005-fa1c41994f3-releases/2023/0
Set inference device  GPU.0.
[INFO] Loading model files: /home/ygj/Program/OpenVINOSharp/model/yolov8/yolov8s-cls.xml
[INFO] model name: torch_jit
[INFO]    inputs:
[INFO]      input name: images
[INFO]      input type: f32
[INFO]      input shape: Shape : [1, 3, 224, 224]
[INFO]    outputs:
[INFO]      output name: output0
[INFO]      output type: f32
[INFO]      output shape: Shape : [1, 1000]
[INFO] Read image  files: /home/ygj/Program/OpenVINOSharp/dataset/image/demo_7.jpgClassification Top 10 result : classid probability
------- -----------
294     0.992173
269     0.002861
296     0.002111
295     0.000714
270     0.000546
276     0.000432
106     0.000159
362     0.000147
260     0.000078
272     0.000070

3. 编译运行 Yolov8-pose 模型

编译运行命令为:

dotnet run pose /home/ygj/Program/OpenVINOSharp/model/yolov8/yolov8s-pose.xml /home/ygj/Program/OpenVINOSharp/dataset/image/demo_9.jpg GPU.0

模型推理输出结果为:

---- OpenVINO INFO----
Description : OpenVINO Runtime
Build number: 2023.0.1-11005-fa1c41994f3-releases/2023/0
Set inference device  GPU.0.
[INFO] Loading model files: /home/ygj/Program/OpenVINOSharp/model/yolov8/yolov8s-pose.xml
[INFO] model name: torch_jit
[INFO]    inputs:
[INFO]      input name: images
[INFO]      input type: f32
[INFO]      input shape: Shape : [1, 3, 640, 640]
[INFO]    outputs:
[INFO]      output name: output0
[INFO]      output type: f32
[INFO]      output shape: Shape : [1, 56, 8400]
[INFO] Read image  files: /home/ygj/Program/OpenVINOSharp/dataset/image/demo_9.jpgClassification  result : 1: 1   0.94   (x:104 y:22 width:152 height:365)  Nose: (188 ,60 ,0.93) Left Eye: (192 ,53 ,0.83) Right Eye: (180 ,54 ,0.90) Left Ear: (196 ,53 ,0.50) Right Ear: (167 ,56 ,0.76) Left Shoulder: (212 ,92 ,0.93) Right Shoulder: (151 ,93 ,0.94) Left Elbow: (230 ,146 ,0.90) Right Elbow: (138 ,142 ,0.93) Left Wrist: (244 ,199 ,0.89) Right Wrist: (118 ,187 ,0.92) Left Hip: (202 ,192 ,0.97) Right Hip: (168 ,193 ,0.97) Left Knee: (184 ,272 ,0.96) Right Knee: (184 ,276 ,0.97) Left Ankle: (174 ,357 ,0.87) Right Ankle: (197 ,354 ,0.88) 

4. 编译运行 Yolov8-seg 模型

编译运行命令为:

dotnet run seg /home/ygj/Program/OpenVINOSharp/model/yolov8/yolov8s-seg.xml /home/ygj/Program/OpenVINOSharp/dataset/image/demo_2.jpg GPU.0 /home/ygj/Program/OpenVINOSharp/dataset/lable/COCO_lable.txt

模型推理输出结果为:

---- OpenVINO INFO----
Description : OpenVINO Runtime
Build number: 2023.0.1-11005-fa1c41994f3-releases/2023/0
Set inference device  GPU.0.
[INFO] Loading model files: /home/ygj/Program/OpenVINOSharp/model/yolov8/yolov8s-seg.xml
47
[INFO] model name: torch_jit
[INFO]    inputs:
[INFO]      input name: images
[INFO]      input type: f32
[INFO]      input shape: Shape : [1, 3, 640, 640]
[INFO]    outputs:
[INFO]      output name: output0
[INFO]      output type: f32
[INFO]      output shape: Shape : [1, 116, 8400]
[INFO] Read image  files: /home/ygj/Program/OpenVINOSharp/dataset/image/demo_2.jpgSegmentation  result : 1: 0 0.90   (x:745 y:42 width:403 height:671)
2: 0 0.86   (x:121 y:196 width:1009 height:516)
3: 27 0.69   (x:434 y:436 width:90 height:280)

六、模型运行时间

  AIxBoard开发板板载了英特尔赛扬N5105 CPU以及英特尔11代集成显卡,此处对CPU、GPU的推理情况做了一个简单测试,主要检测了模型推理时间,并使用英特尔幻影峡谷进行了同步测试,测试结果如表所示.

DeviceCPU: N5105GPU: Intel 11th 集显CPU: i7-1165G7GPU: lntel® Iris® Xe Graphics
Yolov8-det586.3ms83.1ms127.1ms19.5ms
Yolov8-seg795.6ms112.5ms140.1ms25.0ms
Yolov8-pose609.8ms95.1ms117.2ms23.3ms
Yolov8-cls33.1ms9.2ms6.1ms2.7ms

  可以看出,英特尔赛扬N5105 CPU在模型推理性能是十分强大的,且搭配的英特尔11代集成显卡,将推理速度提升了6倍左右,针对Yolov8模型,平均处理速度可以达到10FPs。而相比于幻影峡谷的推理速度,AIxBoard开发板推理性能大约为其五分之一,这相比一般的开发板,AIxBoard开发板的算力还是十分强大的。

七、总结

  在该项目中,我们基于Ubutn 20.04 系统,成功实现了在C#环境下调用OpenVINO™部署深度学习模型,验证了在Linux环境下OpenVINOSharp项目的的可行性,这对后面在Linux环境下开发OpenVINOSharp具有很重要的意义。

  除此之外,我们还使用OpenVINOSharp检验了AIxBoard开发板的模型推理能力,最总针对Yolov8模型,平均处理速度可以达到10FPs,这对目前大多数开发板来说,已经达到了很高的推理速度。后续我还会将继续使用OpenVINOSharp在AIxBoard开发板部署更多的深度学习模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/44718.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux/Ubuntu 的日常升级和安全更新,如何操作?

我安装的是Ubuntu 20.04.6 LTS的Windows上Linux子系统版本&#xff0c;启动完成后显示&#xff1a; Welcome to Ubuntu 20.04.6 LTS (GNU/Linux 5.15.90.4-microsoft-standard-WSL2 x86_64) * Documentation: https://help.ubuntu.com * Management: https://landscape.c…

中国大学生服务外包创新创业大赛丨借 AI 之力,助“记账”难题

一、中国大学生服务外包创新创业大赛 赛事介绍 中国大学生服务外包创新创业大赛&#xff0c;是响应国家关于鼓励服务外包产业发展、加强服务外包人才培养的相关战略举措与号召&#xff0c;举办的每年一届的全国性竞赛。 大赛均由中华人民共和国教育部、中华人民共和国商务部…

火山引擎ByteHouse:一套方案,让OLAP引擎在精准投放场景更高效

由于流量红利逐渐消退&#xff0c;越来越多的广告企业和从业者开始探索精细化营销的新路径&#xff0c;取代以往的全流量、粗放式的广告轰炸。精细化营销意味着要在数以亿计的人群中优选出那些最具潜力的目标受众&#xff0c;这无疑对提供基础引擎支持的数据仓库能力&#xff0…

CAPL通过lookupSignal和DBLookup获取DBC信号的属性信息

文章目录 演示CAPL通过lookupSignal和DBLookup获取DBC信号的属性信息lookupSignalDBLookup代码问题:DBLookup(信号名).AttributeName报错问题: motorola格式的信号使用DBLookup获取信号的bitstart跟ig模块里的信息不一样演示 CAPL通过lookupSignal和DBLookup获取DBC信号的属性…

奥威BI数据可视化工具:360度呈现数据,告别枯燥表格

随着企业数据量的不断增加&#xff0c;如何有效地进行数据分析与决策变得越来越重要。奥威BI数据可视化工具作为一款强大的数据分析工具&#xff0c;在帮助企业深入挖掘数据价值方面具有显著优势。 奥威BI数据可视化工具是一款基于数据仓库技术的数据分析工具&#xff0c;具有…

磁盘满了怎么办?实用小技巧,做不做测试都非常好用!

♥ 前 言 工作了多年的测试&#xff0c;应该多少都会遇到磁盘空间不够的情况&#xff0c;比方你现在正在用的测试环境&#xff0c;因为要测试&#xff0c;所以&#xff0c;项目一直启动&#xff0c;那么就会一直在写日志&#xff0c;如果不定期清理日志&#xff0c;随着时间…

企望制造ERP系统 RCE漏洞[2023-HW]

企望制造ERP系统 RCE漏洞 一、 产品简介二、 漏洞概述三、 复现环境四、 漏洞复现小龙POC检测 五、 修复建议 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;…

阿里网盘海外使用速度很慢

小虎最近在HK使用阿里云盘&#xff0c;速度突然变得很慢&#xff0c;但是百度的没问题。查了发现是阿里的DNS做的不好&#xff0c;所以换了一个DNS速度就上来了。 解决方案 在这个网站&#xff1a;[原创工具] DNS优选(挑选最合适的DNS服务器,拒绝DNS劫下载DNS推荐工具&#x…

[国产MCU]-W801开发实例-开发环境搭建

W801开发环境搭建 文章目录 W801开发环境搭建1、W801芯片介绍2、W801芯片特性3、W801芯片结构4、开发环境搭建1、W801芯片介绍 W801芯片是联盛德微电子推出的一款高性价比物联网芯片。 W801 芯片是一款安全 IoT Wi-Fi/蓝牙 双模 SoC芯片。芯片提供丰富的数字功能接口。支持2.…

Redis常用指令

Redis特点 Redis是一个高性能key/value内存型数据库&#xff0c;在redis中&#xff0c;所有的数据形式都是以键值对的方式来存储的 Redis支持丰富的数据类型 string、list、set、sorted set 指的键值对中值的类型 Redis支持持久化&#xff0c;将内存的数据存储到硬盘里面 Redis…

听GPT 讲Prometheus源代码--util

Prometheus的util目录包含了一些通用的工具模块,主要包含以下文件: buckets.go 这个文件定义了一些常用的指标采样值范围(Quantile buckets),如:0.001,0.01,0.05,0.5,0.9,0.95,0.99,0.999等。这些buckets常用于计算指标的分位数线。 regex.go 这个文件定义了一些正则表达式匹配…

阿里云2核4G服务器配置汇总表_轻量和ECS

阿里云2核4G服务器配置价格表&#xff0c;297元一年&#xff0c;配置为轻量应用服务器2核4G、4M带宽、60GB高效云盘&#xff0c;折合24元一个月。 目录 2核4G服务器轻量&#xff1a; 2核4G服务器ECS 关于轻量和ECS的区别&#xff1a; 2核4G服务器轻量&#xff1a; 云服务器…

JVM学习笔记(一)

1. JVM快速入门 从面试开始&#xff1a; 请谈谈你对JVM 的理解&#xff1f;java8 的虚拟机有什么更新&#xff1f; 什么是OOM &#xff1f;什么是StackOverflowError&#xff1f;有哪些方法分析&#xff1f; JVM 的常用参数调优你知道哪些&#xff1f; 内存快照抓取和MAT分…

verilog学习笔记6——锁存器和触发器

文章目录 前言一、锁存器1、基本SR锁存器——或非门实现2、基本SR锁存器——与非门实现3、门控SR锁存器4、门控D锁存器 二、触发器1、 电平触发的RS触发器/同步SR触发器2、电平触发的D触发器/D型锁存器3、边沿触发的D触发器4、脉冲触发的RS触发器 三、边沿触发、脉冲触发、电平…

OpenCV基础知识(6)— 滤波器

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。在尽量保留原图像信息的情况下&#xff0c;去除图像内噪声、降低细节层次信息等一系列过程&#xff0c;被叫做图像的平滑处理&#xff08;或者叫图像的模糊处理&#xff09;。实现平滑处理最常用的工具就是滤波器。通过调节…

【数据分析入门】Matplotlib

目录 零、图形解析与工作流0.1 图形解析0.2 工作流 一、准备数据1.1 一维数据1.2 二维数据或图片 二、绘制图形2.1 画布2.2 坐标轴 三、绘图例程3.1 一维数据3.2 向量场3.3 数据分布3.4 二维数据或图片 四、自定义图形4.1 颜色、色条与色彩表4.2 标记4.3 线型4.4 文本与标注4.5…

ui设计师工作总结及计划范文模板

ui设计师工作总结及计划范文模板【篇一】 白驹过隙&#xff0c;转眼间某某年已近结尾&#xff0c;时间伴随着我们的脚步急驰而去&#xff0c;到了个人工作总结的时候&#xff0c;蓦然回首&#xff0c;才发现过去的一年不还能画上圆满的句号&#xff0c;内心感慨万千&#xff0c…

11. 实现业务功能--获取用户信息

目录 1. 实现 Controller 2. 单体测试 3. 修复返回值存在的缺陷 3.1 用户的隐私数据&#xff1a;密码的密文和盐不能显示 3.2 将值为 null 的字段可以进行过滤 3.3 时间的格式需要进行处理&#xff0c;如 yyyy-mmmm-ddd HH:mm:ss 3.4 data 属性没有返回 4. 实现前端页…

FifthOne:计算机视觉提示和技巧

一、说明 欢迎来到我们每周的FiftyOne提示和技巧博客&#xff0c;我们回顾了最近在Slack&#xff0c;GitHub&#xff0c;Stack Overflow和Reddit上弹出的问题和答案。FiftyOne是一个开源机器学习工具集&#xff0c;使数据科学团队能够通过帮助他们策划高质量数据集、评估模型、…

解锁项目成功的关键:项目经理的结构化思维之道

1. 项目经理的核心职责 作为项目经理&#xff0c;我们的工作不仅仅是跟踪进度和管理团队。我们的角色在整个项目生命周期中都是至关重要的&#xff0c;从初始概念到最终交付。以下是项目经理的几个核心职责&#xff1a; 确保项目目标的清晰性项目的成功在很大程度上取决于其目…