fcntl函数详解

功能描述:根据文件描述词来操作文件的特性。

#include <unistd.h>
#include <fcntl.h> 
int fcntl(int fd, int cmd); 
int fcntl(int fd, int cmd, long arg); 
int fcntl(int fd, int cmd, struct flock *lock);

[描述]
fcntl()针对(文件)描述符提供控制。参数fd是被参数cmd操作(如下面的描述)的描述符。针对cmd的值,fcntl能够接受第三个参数int arg。

[返回值]
fcntl()的返回值
与命令有关。如果出错,所有命令都返回-1,如果成功则返回某个其他值。下列三个命令有特定返回值:F_DUPFD , F_GETFD , F_GETFL以及F_GETOWN。
    F_DUPFD   返回新的文件描述符
    F_GETFD   返回相应标志
    F_GETFL , F_GETOWN   返回一个正的进程ID或负的进程组ID

 

fcntl函数有5种功能: 
1. 复制一个现有的描述符(cmd=F_DUPFD). 
2. 获得/设置文件描述符标记(cmd=F_GETFD或F_SETFD). 
3. 获得/设置文件状态标记(cmd=F_GETFL或F_SETFL). 
4. 获得/设置异步I/O所有权(cmd=F_GETOWN或F_SETOWN). 
5. 获得/设置记录锁(cmd=F_GETLK , F_SETLK或F_SETLKW).

1. cmd值的F_DUPFD : 
F_DUPFD    返回一个如下描述的(文件)描述符:
        ·最小的大于或等于arg的一个可用的描述符
        ·与原始操作符一样的某对象的引用
        ·如果对象是文件(file)的话,则返回一个新的描述符,这个描述符与arg共享相同的偏移量(offset)
        ·相同的访问模式(读,写或读/写)
        ·相同的文件状态标志(如:两个文件描述符共享相同的状态标志)
        ·与新的文件描述符结合在一起的close-on-exec标志被设置成交叉式访问execve(2)的系统调用

实际上调用dup(oldfd);
等效于

        fcntl(oldfd, F_DUPFD, 0);

而调用dup2(oldfd, newfd);
等效于
        close(oldfd);
        fcntl(oldfd, F_DUPFD, newfd);

2. cmd值的F_GETFD和F_SETFD:      
F_GETFD    取得与文件描述符fd联合的close-on-exec标志,类似FD_CLOEXEC。如果返回值和FD_CLOEXEC进行与运算结果是0的话,文件保持交叉式访问exec(),否则如果通过exec运行的话,文件将被关闭(arg 被忽略)  
      
F_SETFD    设置close-on-exec标志,该标志以参数arg的FD_CLOEXEC位决定,应当了解很多现存的涉及文件描述符标志的程序并不使用常数 FD_CLOEXEC,而是将此标志设置为0(系统默认,在exec时不关闭)或1(在exec时关闭)    

在修改文件描述符标志或文件状态标志时必须谨慎,先要取得现在的标志值,然后按照希望修改它,最后设置新标志值。不能只是执行F_SETFD或F_SETFL命令,这样会关闭以前设置的标志位。 

3. cmd值的F_GETFL和F_SETFL:   
F_GETFL    取得fd的文件状态标志,如同下面的描述一样(arg被忽略),在说明open函数时,已说明
了文件状态标志。不幸的是,三个存取方式标志 (O_RDONLY , O_WRONLY , 以及O_RDWR)并不各占1位。(这三种标志的值各是0 , 1和2,由于历史原因,这三种值互斥 — 一个文件只能有这三种值之一。) 因此首先必须用屏蔽字O_ACCMODE相与取得存取方式位,然后将结果与这三种值相比较。       
F_SETFL    设置给arg描述符状态标志,可以更改的几个标志是:O_APPEND,O_NONBLOCK,O_SYNC 和 O_ASYNC。而fcntl的文件状态标志总共有7个:O_RDONLY , O_WRONLY , O_RDWR , O_APPEND , O_NONBLOCK , O_SYNC和O_ASYNC

可更改的几个标志如下面的描述:
    O_NONBLOCK   非阻塞I/O,如果read(2)调用没有可读取的数据,或者如果write(2)操作将阻塞,则read或write调用将返回-1和EAGAIN错误
    O_APPEND     强制每次写(write)操作都添加在文件大的末尾,相当于open(2)的O_APPEND标志
    O_DIRECT     最小化或去掉reading和writing的缓存影响。系统将企图避免缓存你的读或写的数据。如果不能够避免缓存,那么它将最小化已经被缓存了的数据造成的影响。如果这个标志用的不够好,将大大的降低性能
    O_ASYNC      当I/O可用的时候,允许SIGIO信号发送到进程组,例如:当有数据可以读的时候

4. cmd值的F_GETOWN和F_SETOWN:   
F_GETOWN   取得当前正在接收SIGIO或者SIGURG信号的进程id或进程组id,进程组id返回的是负值(arg被忽略)     
F_SETOWN   设置将接收SIGIO和SIGURG信号的进程id或进程组id,进程组id通过提供负值的arg来说明(arg绝对值的一个进程组ID),否则arg将被认为是进程id

 5. cmd值的F_GETLK, F_SETLK或F_SETLKW 获得/设置记录锁的功能,成功则返回0,若有错误则返回-1,错误原因存于errno。
F_GETLK    通过第三个参数arg(一个指向flock的结构体)取得第一个阻塞lock description指向的锁。取得的信息将覆盖传到fcntl()的flock结构的信息。如果没有发现能够阻止本次锁(flock)生成的锁,这个结构将不被改变,除非锁的类型被设置成F_UNLCK    
F_SETLK    按照指向结构体flock的指针的第三个参数arg所描述的锁的信息设置或者清除一个文件的segment锁。F_SETLK被用来实现共享(或读)锁(F_RDLCK)或独占(写)锁(F_WRLCK),同样可以去掉这两种锁(F_UNLCK)。如果共享锁或独占锁不能被设置,fcntl()将立即返回EAGAIN     
F_SETLKW   除了共享锁或独占锁被其他的锁阻塞这种情况外,这个命令和F_SETLK是一样的。如果共享锁或独占锁被其他的锁阻塞,进程将等待直到这个请求能够完成。当fcntl()正在等待文件的某个区域的时候捕捉到一个信号,如果这个信号没有被指定SA_RESTART, fcntl将被中断

当一个共享锁被set到一个文件的某段的时候,其他的进程可以set共享锁到这个段或这个段的一部分。共享锁阻止任何其他进程set独占锁到这段保护区域的任何部分。如果文件描述符没有以读的访问方式打开的话,共享锁的设置请求会失败。

独占锁阻止任何其他的进程在这段保护区域任何位置设置共享锁或独占锁。如果文件描述符不是以写的访问方式打开的话,独占锁的请求会失败。

结构体flock的指针:
struct flcok 

short int l_type; /* 锁定的状态*/

//以下的三个参数用于分段对文件加锁,若对整个文件加锁,则:l_whence=SEEK_SET, l_start=0, l_len=0
short int l_whence; /*决定l_start位置*/ 
off_t l_start; /*锁定区域的开头位置*/ 
off_t l_len; /*锁定区域的大小*/

pid_t l_pid; /*锁定动作的进程*/ 
};

l_type 有三种状态: 
F_RDLCK   建立一个供读取用的锁定 
F_WRLCK   建立一个供写入用的锁定 
F_UNLCK   删除之前建立的锁定

l_whence 也有三种方式: 
SEEK_SET   以文件开头为锁定的起始位置 
SEEK_CUR   以目前文件读写位置为锁定的起始位置 
SEEK_END   以文件结尾为锁定的起始位置


fcntl文件锁有两种类型:建议性锁和强制性锁
建议性锁是这样规定的:每个使用上锁文件的进程都要检查是否有锁存在,当然还得尊重已有的锁。内核和系统总体上都坚持不使用建议性锁,它们依靠程序员遵守这个规定。
强制性锁是由内核执行的:当文件被上锁来进行写入操作时,在锁定该文件的进程释放该锁之前,内核会阻止任何对该文件的读或写访问,每次读或写访问都得检查锁是否存在。

系统默认fcntl都是建议性锁,强制性锁是非POSIX标准的。如果要使用强制性锁,要使整个系统可以使用强制性锁,那么得需要重新挂载文件系统,mount使用参数 -0 mand 打开强制性锁,或者关闭已加锁文件的组执行权限并且打开该文件的set-GID权限位。
建议性锁只在cooperating processes之间才有用。对cooperating process的理解是最重要的,它指的是会影响其它进程的进程或被别的进程所影响的进程,举两个例子:
(1) 我们可以同时在两个窗口中运行同一个命令,对同一个文件进行操作,那么这两个进程就是cooperating  processes
(2) cat file | sort,那么cat和sort产生的进程就是使用了pipe的cooperating processes

使用fcntl文件锁进行I/O操作必须小心:进程在开始任何I/O操作前如何去处理锁,在对文件解锁前如何完成所有的操作,是必须考虑的。如果在设置锁之前打开文件,或者读取该锁之后关闭文件,另一个进程就可能在上锁/解锁操作和打开/关闭操作之间的几分之一秒内访问该文件。当一个进程对文件加锁后,无论它是否释放所加的锁,只要文件关闭,内核都会自动释放加在文件上的建议性锁(这也是建议性锁和强制性锁的最大区别),所以不要想设置建议性锁来达到永久不让别的进程访问文件的目的(强制性锁才可以);强制性锁则对所有进程起作用。

fcntl使用三个参数 F_SETLK/F_SETLKW, F_UNLCK和F_GETLK 来分别要求、释放、测试record locks。record locks是对文件一部分而不是整个文件的锁,这种细致的控制使得进程更好地协作以共享文件资源。fcntl能够用于读取锁和写入锁,read lock也叫shared lock(共享锁), 因为多个cooperating process能够在文件的同一部分建立读取锁;write lock被称为exclusive lock(排斥锁),因为任何时刻只能有一个cooperating process在文件的某部分上建立写入锁。如果cooperating processes对文件进行操作,那么它们可以同时对文件加read lock,在一个cooperating process加write lock之前,必须释放别的cooperating process加在该文件的read lock和wrtie lock,也就是说,对于文件只能有一个write lock存在,read lock和wrtie lock不能共存。

下面的例子使用F_GETFL获取fd的文件状态标志

#include<fcntl.h>
#include<unistd.h>
#include<iostream>
#include<errno.h>
using namespace std;

int main(int argc,char* argv[])
{
  int fd, var;
  //  fd=open("new",O_RDWR);
  if (argc!=2)
  {
      perror("--");
      cout<<"请输入参数,即文件名!"<<endl;
  }

  if((var=fcntl(atoi(argv[1]), F_GETFL, 0))<0)
  {
     strerror(errno);
     cout<<"fcntl file error."<<endl;
  }

  switch(var & O_ACCMODE)
  {
   case O_RDONLY : cout<<"Read only.."<<endl;
                   break;
   case O_WRONLY : cout<<"Write only.."<<endl;
                   break;
   case O_RDWR   : cout<<"Read wirte.."<<endl;
                   break;
   default  : break;
  }

 if (val & O_APPEND)
    cout<<",append"<<endl;

 if (val & O_NONBLOCK)
    cout<<",noblocking"<<endl;

 cout<<"exit 0"<<endl;

 exit(0);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/445055.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用nohup让程序永远后台运行

使用nohup让程序永远后台运行 Unix/Linux下一般比如想让某个程序在后台运行&#xff0c;很多都是使用 & 在程序结尾来让程序自动运行。比如我们要运行mysql在后台&#xff1a; /usr/local/mysql/bin/mysqld_safe --usermysql &但是加入我们很多程序并不象mysqld一样做…

算法(8)-leetcode-explore-learn-数据结构-链表

leetcode-explore-learn-数据结构-链表11.概述1.1 链表插入操作1.2 链表删除操作2.设计链表本系列博文为leetcode-explore-learn子栏目学习笔记&#xff0c;如有不详之处&#xff0c;请参考leetcode官网&#xff1a;https://leetcode-cn.com/explore/learn/card/linked-list/所…

Mysql索引优化实例讲解

MYSQL描述&#xff1a;一个文章库&#xff0c;里面有两个表&#xff1a;category和article。category里面有10条分类数据。article里面有20万条。article里面有一个"article_category"字段是与category里的"category_id"字段相对应的。article表里面已经把…

给自己的VIM配置

编辑 .vimrc 文件如下&#xff1a; filetype plugin on "autocmd Filetype cpp,c,java,cs set omnifunccppcomplete#Complete set nu set nocp set nobackup let g:C_AuthorName gaoke let g:C_AuthorRef gaoke let g:C_Email gaoketaomee.…

shell一文入门通

简单来说“Shell编程就是对一堆Linux命令的逻辑化处理”。 W3Cschool 上的一篇文章是这样介绍 Shell的 hello world 学习任何一门编程语言第一件事就是输出HelloWord了&#xff01;下面我会从新建文件到shell代码编写来说下Shell 编程如何输出Hello World。 (1)新建一个文件…

算法(9)--两个数的最大公约数

两个数的最大公约数1.辗转相除法求解两个数的最大公约数2.更相减损术求解两个数的最大公约数3.不严格理解1.辗转相除法求解两个数的最大公约数 辗转相除法&#xff1a;两个正整数a和b&#xff08;a>b&#xff09;的最大公约数等于a除以b的余数与b 之间的最大公约数。–如果…

RPC编程

图 3 说明在客户机和服务器之间完成 RPC 涉及的步骤。 图 3. 在客户机和服务器之间完成 RPC 涉及的步骤服务器 RPC 应用程序初始化期间它会向 RPC 运行时库注册接口。需要注册接口是因为&#xff0c;客户机在向服务器发出远程过程调用时&#xff0c;要检查它是否与服务器兼容。…

synchronized使用和原理全解

synchronized是Java中的关键字&#xff0c;是一种同步锁。它修饰的对象有以下几种&#xff1a; 修饰一个方法 被修饰的方法称为同步方法&#xff0c;其作用的范围是整个方法&#xff0c;作用的对象是调用这个方法的对象&#xff1b; 修饰一个静态的方法 其作用的范围是整个…

RPC学习笔记

在查看libc6-dev软件包提供的工具&#xff08;用 dpkg -L libc6-dev 命令&#xff09;的时候&#xff0c;发现此软件包提供了一个有用的工具rpcgen命令。通过rpcgen的man手册看到此工具的作用是把RPC源程序编译成C语言源程序&#xff0c;从而轻松实现远程过程调用。下面的例子程…

算法(10)-leetcode-explore-learn-数据结构-链表双指针技巧

leetcode-explore-learn-数据结构-链表21.概述2.例题2.1 环形链表判断2.2 环形链表22.3 相交链表2.4 删除链表的倒数第N个节点3.小结本系列博文为leetcode-explore-learn子栏目学习笔记&#xff0c;如有不详之处&#xff0c;请参考leetcode官网&#xff1a;https://leetcode-cn…

一个简单的游戏服务器框架

最近看到百度空间的一个帖子&#xff0c;不错&#xff0c;在这里整理下&#xff0c;转载至我的博客里&#xff0c;开始自己慢慢琢磨写一个框架。 我先从上层结构说起&#xff0c;一直到实现细节吧&#xff0c;想起什么就写什么。 第一部分 服务器逻辑 服务器这边简单的分为三…

堆和栈的精华大总结

Java内存分配原理 栈、堆、常量池虽同属Java内存分配时操作的区域&#xff0c;但其适用范围和功用却大不相同。 一般Java在内存分配时会涉及到以下区域&#xff1a; ◆寄存器&#xff1a;我们在程序中无法控制 ◆栈&#xff1a;存放基本类型的数据和对象的引用&#xff0c;但…

算法(11)-leetcode-explore-learn-数据结构-链表的经典问题

leetcode-explore-learn-数据结构-链表31.反转一个链表2.移除链表元素3.奇偶链表4.回文链表5.小结本系列博文为leetcode-explore-learn子栏目学习笔记&#xff0c;如有不详之处&#xff0c;请参考leetcode官网&#xff1a;https://leetcode-cn.com/explore/learn/card/linked-l…

探索式软件测试

James A.Whittaker [美] 詹姆斯惠特克&#xff08;软件测试领域绝对的大师&#xff09;著作《Exploratory Software Testing》&#xff0c;中文名《探索式软件测试》&#xff0c;记得当时被这本书深深吸引啦&#xff08;我不知道有多少做测试的小伙伴看过这本书&#xff09;&am…

Linux线程池的设计

我设计这个线程池的初衷是为了与socket对接的。线程池的实现千变万化&#xff0c;我得这个并不一定是最好的&#xff0c;但却是否和我心目中需求模型的。现把部分设计思路和代码贴出&#xff0c;以期抛砖引玉。个人比较喜欢搞开源&#xff0c;所以大家如果觉得有什么需要改善的…

算法(12)-leetcode-explore-learn-数据结构-双链表的设计

leetcode-explore-learn-数据结构-链表4双链表的设计本系列博文为leetcode-explore-learn子栏目学习笔记&#xff0c;如有不详之处&#xff0c;请参考leetcode官网&#xff1a;https://leetcode-cn.com/explore/learn/card/linked-list/所有例题的编程语言为python 双链表的设…

安全方面知识

什么是文件上传漏洞 文件上传漏洞是指 由于程序员在对用户文件上传部分的控制不足或者处理缺陷&#xff0c;而导致的用户可以越过其本身权限向服务器上上传可执行的动态脚本文件 这里上传的文件可以是木马&#xff0c;病毒&#xff0c;恶意脚本或者WebShell等。 这种攻击方式是…

CE游戏外挂工具

CHEAT ENGINE(以下简称CE)是我见过的最优秀的游戏作弊工具。它的优点多不胜数&#xff0c;虽然单独从搜索游 戏里面的数值来说&#xff0c;它并不比其他同类软件强多少&#xff0c;但它不仅仅是个游戏修改工具&#xff0c;它还有其他游戏修改软件所没有的一些特点&#xff0c;例…

外挂编程-动作模拟技术

几乎所有的游戏都有大量繁琐和无聊的攻击动作以增加玩家的 功力,还有那些数不完的迷宫,这些好像已经成为了角色游戏的代名词。现在,外挂可以帮助玩家从这些繁琐而无聊 的工作中摆脱出来。 1. 鼠标模拟技术 几乎所有的游戏中都使用了鼠标来改变角色的位置和方向,玩家仅用…

算法(13)-leetcode-explore-learn-数据结构-链表小结

leetcode-explore-learn-数据结构-链表51.小结2.例题2.1合并两个有序链表思路1:迭代思路2:递归2.2 两数相加2.3 扁平化多级双向链表2.4 复制带随机指针的链表2.5 旋转链表本系列博文为leetcode-explore-learn子栏目学习笔记&#xff0c;如有不详之处&#xff0c;请参考leetcode…