数论基础代码合集

欧几里德

#include<iostream>
using namespace std;
int hcf(int a,int b)      
{int r=0;while(b!=0){r=a%b;a=b;b=r;}return(a);
}
lcd(int u,int v,int h) //u=a,v=b,h为最小公约数=hcf(a,b);
{return(u*v/h);
}
int main()
{int a,b,x,y;cin>>a>>b;x=hcf(a,b);y=lcd(a,b,x);cout<<x<<" "<<y<<endl;return 0;
}

扩展欧几里德

#include <iostream>
using namespace std;
__int64 ext_euclid(__int64 a,__int64 b, __int64 &x, __int64 &y)
{int t;__int64 d;if (b==0) {x=1;y=0;return a;}d=ext_euclid(b,a %b,x,y);t=x;x=y;y=t-a/b*y;return d;
}
void modular_equation(__int64 a,__int64 b,__int64 c)//ax = b(mod n)
{__int64 d;__int64 x,y;d = ext_euclid(a,b,x,y);if ( c % d != 0 )printf("No answer\n");else{x = (x * c/d) % b ;// 第一次求出的x ;__int64 t = b/d;x = (x%t + t)%t;printf("%I64d\n",x);//最小的正数的值for (int i=0;i<d;i++)printf("The %dth answer is : %ld\n",i+1,(x+i*(b/d))%b); //所有的正数值}
}
/*函数返回值为gcd(a,b),并顺带解出ax+by=gcd(a,b)的一个解x,y,对于不定方程ax+by=c的通解为:x=x*c/d+b/d*ty=y*c/d+a/d*t当c%gcd(a,b)!=0时,不定方程无解.*/

 

中国剩余定理

#include <iostream>
using namespace  std;int ext_euclid(int a,int b,int &x,int &y)  //求gcd(a,b)=ax+by
{int t,d;if (b==0) {x=1;y=0;return a;}d=ext_euclid(b,a %b,x,y);t=x;x=y;y=t-a/b*y;return d;
}int China(int W[],int B[],int k)   //W为按多少排列,B为剩余个数   W>B  K为组数
{int i;int d,x,y,a=0,m,n=1;for (i = 0;i<k;i++)n *= W[i];for (i=0;i<k;i++){m=n/W[i];d=ext_euclid(W[i],m,x,y);a=(a+y*m*B[i])%n;}if (a>0return a;elsereturn(a+n);
}int main(){int B[100],W[100];                                求int k ;                                           a = 2( mod 5 )cin >> k ;                                        a = 3( mod 13)for(int i = 0 ; i < k ;i++)                            的解{                                               2cin >> W[i];                                  5 2cin >> B[i];                                   13 3 }                                               输出 42cout<<China(W,B,k)<<endl;return 0;}

 

欧拉函数

求小于n的所有欧拉数

#include <iostream>using namespace std;int phi[1000];     //数组中储存每个数的欧拉数void genPhi(int n)//求出比n小的每一个数的欧拉数(n-1的){int i, j, pNum = 0 ;memset(phi, 0, sizeof(phi)) ;phi[1] = 1 ;for(i = 2; i < n; i++){if(!phi[i]){for(j = i; j < n; j += i){if(!phi[j])phi[j] = j;phi[j] = phi[j] / i * (i - 1);}}}}

n的欧拉数

int eular(int n){int ret=1,i;for (i=2;i*i<=n;i++)if (n%i==0){n/=i,ret*=i-1;while (n%i==0)n/=i,ret*=i;}if (n>1)ret*=n-1;return ret;    //n的欧拉数}

行列式计算

#include <iostream>using namespace std;int js(int s[100][100],int n){int z,j,k,r,total=0;int b[100][100];  /*b[N][N]用于存放,在矩阵s[N][N]中元素s[0]的余子式*/if(n>2){for(z=0;z<n;z++){for(j=0;j<n-1;j++)for(k=0;k<n-1;k++)if(k>=z)b[j][k]=s[j+1][k+1]; elseb[j][k]=s[j+1][k];if(z%2==0)r=s[0][z]*js(b,n-1); /*递归调用*/elser=(-1)*s[0][z]*js(b,n-1);total=total+r;}}else if(n==2)total=s[0][0]*s[1][1]-s[0][1]*s[1][0];return total;}

排列

long A(long n,long m)   //n>m{long a=1;while(m!=0)  {a*=n;n--;m--;}return a;}

组合

long C(long n,long m)     //n>m{long i,c=1;i=m;while(i!=0)   {c*=n;n--;i--;}while(m!=0)  {c/=m;m--;}return c;}

大数乘大数

#include <iostream>
#include <string>
using namespace std;
char a[1000],b[1000],s[10000];
void mult(char a[],char b[],char s[])     //a被乘数,b乘数,s为积
{int i,j,k=0,alen,blen,sum=0,res[65][65]={0},flag=0;char result[65];alen=strlen(a);blen=strlen(b);for (i=0;i<alen;i++)for (j=0;j<blen;j++) res[i][j]=(a[i]-'0')*(b[j]-'0');for (i=alen-1;i>=0;i--){for (j=blen-1;j>=0;j--) sum=sum+res[i+blen-j-1][j];result[k]=sum%10;k=k+1;sum=sum/10;}for (i=blen-2;i>=0;i--){for (j=0;j<=i;j++) sum=sum+res[i-j][j];result[k]=sum%10;k=k+1;sum=sum/10;}if (sum!=0) {result[k]=sum;k=k+1;}for (i=0;i<k;i++) result[i]+='0';for (i=k-1;i>=0;i--) s[i]=result[k-1-i];s[k]='\0';while(1){if (strlen(s)!=strlen(a)&&s[0]=='0')strcpy(s,s+1);elsebreak;}
}int main(){cin>>a>>b;mult(a,b,s);cout<<s<<endl;return 0;}

大数乘小数

#include <iostream>using namespace std;char a[100],t[1000];void mult(char c[],int m,char t[])  // c为大数,m<=10,t为积{int i,l,k,flag,add=0;char s[100];l=strlen(c);for (i=0;i<l;i++)s[l-i-1]=c[i]-'0';for (i=0;i<l;i++){k=s[i]*m+add;if (k>=10){s[i]=k%10;add=k/10;flag=1;}else{s[i]=k;flag=0;add=0;}}if (flag){l=i+1;s[i]=add;}elsel=i;for (i=0;i<l;i++)t[l-1-i]=s[i]+'0';t[l]='\0';}int main(){int i;cin>>a>>i;mult(a,i,t);cout<<t<<endl;return 0;}

大数加法

#include <iostream>#include <string>using namespace std;char a[1000],b[1000],s[10000];void add(char a[],char b[],char s[])//a被加数,b加数,s和{int i,j,k,up,x,y,z,l;char *c;if (strlen(a)>strlen(b)) l=strlen(a)+2; else l=strlen(b)+2;c=(char *) malloc(l*sizeof(char));i=strlen(a)-1;j=strlen(b)-1;k=0;up=0;while(i>=0||j>=0){if(i<0) x='0'; else x=a[i];if(j<0) y='0'; else y=b[j];z=x-'0'+y-'0';if(up) z+=1;if(z>9) {up=1;z%=10;} else up=0;c[k++]=z+'0';i--;j--;}if(up) c[k++]='1';i=0;c[k]='\0';for(k-=1;k>=0;k--)s[i++]=c[k];s[i]='\0';}int main(){cin>>a>>b;add(a,b,s);cout<<s<<endl;return 0;}

 

大数减法

#include <iostream>using namespace std;char a[1000],b[1000],s[10000];void sub(char a[],char b[],char s[]){int i,l2,l1,k;l2=strlen(b);l1=strlen(a);s[l1]='\0';l1--;for (i=l2-1;i>=0;i--,l1--){if (a[l1]-b[i]>=0)s[l1]=a[l1]-b[i]+'0';else{s[l1]=10+a[l1]-b[i]+'0';a[l1-1]=b[l1-1]-1;}}k=l1;while(a[k]<0) {a[k]+=10;a[k-1]-=1;k--;}while(l1>=0) {s[l1]=a[l1];l1--;}loop:if (s[0]=='0'){l1=strlen(a);for (i=0;i<l1-1;i++) s[i]=s[i+1];s[l1-1]='\0';goto loop;}if (strlen(s)==0) {s[0]='0';s[1]='\0';}}int main(){cin>>a>>b;sub(a,b,s);cout<<s<<endl;return 0;}

 

大数阶乘

#include <iostream>#include <cmath>using namespace std;long a[10000];int factorial(int n)         //n为所求阶乘的n!的n{int i,j,c,m=0,w;a[0]=1;for(i=1;i<=n;i++){c=0;for(j=0;j<=m;j++){a[j]=a[j]*i+c;c=a[j]/10000;a[j]=a[j]%10000;}if(c>0) {m++;a[m]=c;}}w=m*4+log10(a[m])+1;printf("%ld",a[m]); //        输出for(i=m-1;i>=0;i--) //printf("%4.4ld",a[i]);//printf("\n");return w;            //返回值为阶乘的位数}

 

储存方法很巧,每一个a[i]中存四位,不足四位在前加0补齐

 

 

大数求余

int mod(int B)     //A为大数,B为小数{int i = 0,r = 0;while( A[i] != '\0' ){r=(r*10+A[i++]-'0')%B;}return r ;    //r为余数}

高精度任意进制转换

#include <iostream>#include <string>using namespace std;char s[1000],s2[1000];   // s[]:原进制数字,用字符串表示,s2[]:转换结果,用字符串表示long d1,d2;   // d1:原进制数,d2:需要转换到的进制数void conversion(char s[],char s2[],long d1,long d2){long i,j,t,num;char c;num=0;for (i=0;s[i]!='\0';i++){if (s[i]<='9'&&s[i]>='0') t=s[i]-'0'; else t=s[i]-'A'+10;num=num*d1+t;}i=0;while(1){t=num%d2;if (t<=9) s2[i]=t+'0'; else s2[i]=t+'A'-10;num/=d2;if (num==0) break;i++;}for (j=0;j<=i/2;j++){c=s2[j];s2[j]=s2[i-j];s2[i-j]=c;}s2[i+1]='\0';}int main(){while (1){cin>>s>>d1>>d2;conversion(s,s2,d1,d2);cout<<s2<<endl;}return 0;}

判断一个数是否素数

#include <iostream>//基本方法,n为所求数,返回1位素数,0为合数

#include <cmath>

using namespace std;

int comp(int n){

int i,flag=1;

    for (i=2;i<=sqrt(n);i++)

    if (n%i==0) {flag=0;break;}

    if (flag==1) return 1; else return 0;}

素数表

int prime(int a[],int n)            //小于n的素数{   int i,j,k,x,num,*b;n++;n/=2;b=(int *)malloc(sizeof(int)*(n+1)*2);a[0]=2;a[1]=3;num=2;for(i=1;i<=2*n;i++)b[i]=0;for(i=3;i<=n;i+=3)for(j=0;j<2;j++){x=2*(i+j)-1;while(b[x]==0){a[num++]=x;for(k=x;k<=2*n;k+=x)b[k]=1;}}return num; }                //小于n的素数的个数}bool flag[1000000];void prime(int M)               //01表{     int i , j;int sq = sqrt(double(M));     for(i = 0 ;i < M ;i ++)flag[i] = true;    flag[1] = false;   flag[0] = false;for(i = 2 ;i <= sq ;i++)if(flag[i]){for(j = i*i ;j < M ;j += i)flag[j] = false;}}

     Miller_Rabin随机素数测试算法    

        说明:这种算法可以快速地测试一个数是否  

        满足素数的必要条件,但不是充分条件。不  

        过也可以用它来测试素数,出错概率很小,  

        对于任意奇数n>2和正整数s,该算法出错概率  

        至多为2^(-s),因此,增大s可以减小出错概  

        率,一般取s=50就足够了。

#include<iostream>#include <cmath>using namespace std;int Witness(int a, int n)  {  int i, d = 1, x;  for (i = ceil( log( (float) n - 1 ) / log(2.0) ) - 1; i >= 0; i--)    {  x = d;  d = (d * d) % n;  if ( (d == 1) && (x != 1) && (x != n-1) )return 1;  if ( ( (n - 1) & ( 1<<i ) ) >0 )d = (d * a) % n;  }  return (d == 1 ? 0 : 1);          }  int Miller_Rabin(int n, int s)  {  int j, a;  for (j = 0; j < s; j++)  {    a = rand() * (n - 2) / RAND_MAX + 1;  if (Witness(a, n))return 0;  }  return 1;        }  int main(){int x;cin>>x;cout<<Miller_Rabin(x , 50)<<endl;return 0;}

 

整数拆分不可重复

#include <iostream>#include <memory>using namespace std;const int MAX = 500;long long data[MAX][MAX];int main(){int i,j;memset(data, 0, sizeof(int)*MAX);for(i = 0; i < MAX; i++)data[0][i] = 0;for(i = 0; i < MAX; i++){for(j = 0; j < MAX; j++){int sum = j*(j+1)/2;if(i > sum) data[i][j] = 0;else if(i == sum) data[i][j] = 1;else{if(i == j) data[i][j] = 1 + data[i][j-1];else if(i < j) data[i][j] = data[i][i];else data[i][j] = data[i-j][j-1] + data[i][j-1];}}}int n;while(cin >> n)cout << data[n][n] << endl;return 0;}整数拆分积最大int data[100];void main(int n;){      int k = 2;for(; n >= k; n-=k,k++)data[k] = k;for(int i = k-1; i >= 2 && n; i--, n--)data[i]++;data[k-1] += n;for(int j = 2; j < k; j++)cout << data[j] << " ";cout << endl; }

整数的无序拆分(可重复)

#include <iostream>       //求出可分解个数#include <memory>using namespace std;const int MAX = 600;long long data[MAX][MAX];int main(){int i,j;memset(data, 0, sizeof(int)*MAX);for(j = 0; j < MAX; j++)data[0][j] = 0;for(i = 1; i < MAX; i++){for(j = 1; j < MAX; j++){if(i == j)data[i][j] = data[i][j-1]+1;else if(i < j)data[i][j] = data[i][i];elsedata[i][j] = data[i][j-1]+data[i-j][j];}}     int n;while(cin >> n)cout << data[n][n] << endl;return 0;}

整数的无序拆分(可重复)

#include <iostream>   //列出分解情况#include <memory>using namespace std;const int MAX = 300;int data[MAX];int main(){int i,n;cin >> n;for(i = 0; i < n; i++){data[i] = 1;printf("1");}printf("\n");int size = n;while(size > 1){int t, p, r;t = data[size-1] + data[size-2];p = t / (data[size-2]+1);r = t % (data[size-2]+1);t = data[size-2]+1;i = size - 2;size = size - 2 + p;for(; i < size; i++)data[i] = t;data[size-1] += r;for(i = 0; i < size; i++)printf("%d", data[i]);printf("\n");}return 0;}

约瑟夫环

void f(){int n , k , m , i , j , start;while(cin>>n>>k>>m )   //n代表有多少个人 , k表示叫到k的人出列 , m 表示第一次谁先开始叫{start = 0;if( !n && !k && !m)return 0;for(i = 1 ;i < n; i++){start = (start + k) % i;}start++;start = (start + m) % n;if(!start)cout<<n<<endl;elsecout<<start<<endl;}return ;}#include <stdio.h>main(){int n, m, i, s=0;printf ("N M = "); scanf("%d%d", &n, &m);for (i=2; i<=n; i++) s=(s+m)%i;printf ("The winner is %d\n", s+1);}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/444504.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++:03---引用类型

一、概念 C++中的一种新的变量类型,作用是为变量取别名二、引用规则 引用被创建时必须被初始化(即必须指向一个对象,因此引用一旦被初始化,就不能再指向其他对象)int a = 10; int &p = a; //正确 int &p2; //错误,引用必须初始化引用的数据类型必须与被引用的…

三个博弈基础

&#xff08;一&#xff09;巴什博奕&#xff08;Bash Game&#xff09;&#xff1a;只有一堆n个物品&#xff0c;两个人轮流从这堆物品中取物&#xff0c;规定每次至少取一个&#xff0c;最多取m个。最后取光者得胜。 显然&#xff0c;如果nm1&#xff0c;那么由于一次最…

(十五)nodejs循序渐进-高性能游戏服务器框架pomelo之Protobuf模块

消息压缩 在实际编程中&#xff0c;为了减少数据传输带宽的消耗&#xff0c;提高传输效率&#xff0c;pomelo提供了对消息的压缩&#xff0c;包括基于字典的对route的压缩和基于protobuf的对具体传输数据的压缩。 route压缩 在实际编程中&#xff0c;网络带宽的有效数据负载…

C++:13---多态和虚函数表

多态的意思为“以一个public基类的指针/引用,寻址一个派生类对象”。 “多态”的关键在于通过基类指针或引用调用一个虚函数时,编译时不确定到底调用的是基类还是派生类的函数,运行时才确定。这是如何实现的呢?请看下面的程序,该程序演示了多态类对象存储空间的大小。 #in…

leetcode96. 不同的二叉搜索树 动归vs数学?

给定一个整数 n&#xff0c;求以 1 ... n 为节点组成的二叉搜索树有多少种&#xff1f; 示例: 输入: 3 输出: 5 解释: 给定 n 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 …

Redis:06---数据库管理

一、服务器中的数据库Redis服务器将所有数据库都保存在服务器状态redis.h/redisServer结构的db数组中&#xff0c;db数组的每个项都是一个redis.h/redisDb结构&#xff0c;每个redisDb结构代表一个数据库&#xff1a;struct redisServer {// ...redisDb *db; // 一个数组&#…

leetcode95. 不同的二叉搜索树 II

给定一个整数 n&#xff0c;生成所有由 1 ... n 为节点所组成的二叉搜索树。 示例: 输入: 3 输出: [ [1,null,3,2], [3,2,null,1], [3,1,null,null,2], [2,1,3], [1,null,2,null,3] ] 解释: 以上的输出对应以下 5 种不同结构的二叉搜索树&#xff1a; 1 3 …

在同一局域网下连接共享文件夹失败,提示:你不能访问共享文件夹,因为你组织的安全策略阻止未经身份验证的来宾访问

1.尝试打开guest访问。 &#xff08;1&#xff09;使用键盘 win R 键&#xff0c;打开运行窗口&#xff0c;并输入 gpedit.msc 打开本地组策略编辑器窗口 &#xff08;2&#xff09;选择计算机配置------->管理模板-------->网络-------->Lanman工作站。 &#…

(十五)深入浅出TCPIP之Hello CDN

什么是CDNCDN 其实是 Content Delivery Network 的缩写&#xff0c;即“内容分发网络”。CDN是将媒体资源&#xff0c;动静态图片(Flash) &#xff0c;HTML, CSS, JS等等内容缓存到距离你更近的互联网数据中心&#xff0c;从而让用户进行共享资源&#xff0c;实现缩减站点间的响…

Redis:07---Redis数据结构

一、五大数据结构Redis可以存储键与5种不同数据结构类型之间的映射&#xff0c;这5种数据结构类型分别为&#xff1a;STRING&#xff1a;字符串LIST&#xff1a;列表SET&#xff1a;集合HASH&#xff1a;散列ZSET&#xff1a;有序集合TYPE命令用来获得键的数据类型&#xff0c;…

C++:14---虚继承,虚函数,多态

一、多级混合继承 下面先介绍菱形继承 //菱形继承 class A { public: int data; }; class B:public A { public: int data; }; class C:public A { public: int data; }; class D:public B,public C { public: int data; };int main() { D c; D.data=1; D.B::data=2;//访问B中的…

(十四)nodejs循序渐进-高性能游戏服务器框架pomelo之开发Treasures游戏

#Tutorial 2 -- Treasures ##描述 Treasures 游戏是从 LordOfPomelo 中抽取出来&#xff0c;去掉了大量的游戏逻辑&#xff0c;用以更好的展示 Pomelo 框架的用法以及运作机制。 Treasures 很简单&#xff0c;输入一个用户名后&#xff0c;会随机得到一个游戏角色&#xff0c;…

leetcode243. 最短单词距离(vip题)好像挺简单?

给定一个单词列表和两个单词 word1 和 word2&#xff0c;返回列表中这两个单词之间的最短距离。 示例: 假设 words ["practice", "makes", "perfect", "coding", "makes"] 输入: word1 “coding”, word2 “practice”…

谈谈苹果应用内支付(IAP)的坑

一、请求商品 下面是请求商品的代码: - (void)validateProductIdentifier:(NSArray *)productIdentifier {SKProductsRequest *productRequest = [[SKProductsRequest alloc] initWithProductIdentifiers:[NSSet setWithArray:productIdentifier]];self.request = productRe…

leetcode204. 计数质数(vip题)

统计所有小于非负整数 n 的质数的数量。 示例: 输入: 10 输出: 4 解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。 思路&#xff1a;筛法&#xff0c;见代码。 class Solution {public int countPrimes(int n) {// 1. 给数加上标记byte[] nums new byte[n];for (i…

如何使得客户端和服务器端完美配合做IOS应用内付费

配置Developer.apple.com 登录到Developer.apple.com,然后进行以下步骤: 为应用建立建立一个不带通配符的App ID用该App ID生成和安装相应的Provisioning Profile文件。配置iTunes Connect 登录到iTunes Connet,然后进行以下步骤: 用该App ID创建一个新的应用。在该应用中…

IOS内购流程从0-1手把手教会

苹果掌握着可能是全球最重要的APP分发渠道,然而30%的抽成近年来也被人批评,现在苹果似乎也看到反对意见了,从2021年1月1日开始,部分小型企业的分成费用降低到15%。 据报道,苹果将于2021年1月1日启动App Store小企业项目,会降低他们的抽成费用。针对年收入不足100万美元的…

leetcode217. 存在重复元素(vip题)超简单

给定一个整数数组&#xff0c;判断是否存在重复元素。 如果任何值在数组中出现至少两次&#xff0c;函数返回 true。如果数组中每个元素都不相同&#xff0c;则返回 false。 示例 1: 输入: [1,2,3,1] 输出: true 示例 2: 输入: [1,2,3,4] 输出: false 示例 3: 输入: [1,1,…

订单数据持久化和验证相关解决方案

订单数据持久化 有时候苹果支付在支付完成后,从苹果服务器返回收据的过程中可能会掉单(可能是网络问题,可能是苹果BUG,也有一部分是开发者自身埋的坑),因此我们需要一个订单持久化的机制来保障。 首先根据内购商品ID(此商品ID是在苹果后台建好的内购商品)、用户信息(…

IOS iap处理逻辑流程图再次梳理

序言: 本文补全一下iOS iap处理逻辑。 iap处理逻辑 苹果退单wiki:https://developer.apple.com/documentation/storekit/in-app_purchase/handling_refund_notifications 一、上图主要处理了以下业务: 普通购买 自动续订订阅 补单处理 预防黑产 退单处理 二、除了上述业…