图像检索技术研究:深度度量与深度散列在相似性学习中的应用比较与实践 - 使用Python与Jupyter环境

引言

在计算机视觉领域,图像检索是一个长期存在并持续受到研究者关注的重要话题。随着大数据时代的到来,如何高效、准确地从海量数据中检索到相似的图像成为一个巨大的挑战。传统的检索方法在大数据环境下表现不佳,而深度学习技术的崛起为图像检索带来了新的机遇。尤其是深度度量和深度散列这两种方法,它们在图像检索的应用中展现出了巨大的潜力。

本文将深入探讨这两种方法的原理、应用,以及它们在实际项目中的效果比较。

1. 相似性学习简介

相似性学习的目标是学习一个函数,该函数可以度量两个输入样本之间的相似度。在图像检索中,这通常意味着比较两张图像的内容是否相似。

代码示例1: 计算图像的相似性

import numpy as np
from sklearn.metrics.pairwise import cosine_similaritydef compute_similarity(image1_feature, image2_feature):return cosine_similarity([image1_feature], [image2_feature])[0][0]# 假设image1_feature和image2_feature是提取的特征
similarity = compute_similarity(image1_feature, image2_feature)
print(f"图像相似度为: {similarity:.2f}")

2. 深度度量学习

深度度量学习的核心思想是利用深度学习模型来学习一个度量空间,在该空间中,相似的样本会被映射到接近的位置,而不相似的样本会被远离。

代码示例2: 使用Siamese网络进行深度度量学习

import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Flatten, Subtract
from tensorflow.keras.models import Model# 定义Siamese网络
input_shape = (224, 224, 3)
base_network = tf.keras.Sequential([Flatten(input_shape=input_shape),Dense(128, activation='relu'),Dense(64, activation='relu')
])input_1 = Input(shape=input_shape)
input_2 = Input(shape=input_shape)feature_1 = base_network(input_1)
feature_2 = base_network(input_2)distance = Subtract()([feature_1, feature_2])model = Model(inputs=[input_1, input_2], outputs=distance)
model.compile(optimizer='adam', loss='mse')

以上是Siamese网络的基本架构,它可以用于度量两张图像之间的差异。

具体过程请下载完整项目。

3. 深度散列学习

深度散列学习的目标是使用深度学习技术生成紧凑的二进制码(hash codes)来表示数据。这些二进制码可以用于高效的大规模图像检索,因为计算二进制码之间的汉明距离比计算原始特征的欧几里得距离要快得多。

代码示例3: 深度散列网络

import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Flatten, Lambda
from tensorflow.keras.models import Modeldef binary_activation(x):return tf.sign(x - 0.5)# 定义深度散列网络
input_shape = (224, 224, 3)
base_hash_network = tf.keras.Sequential([Flatten(input_shape=input_shape),Dense(128, activation='relu'),Dense(64, activation='relu'),Dense(32), # 32位散列码Lambda(binary_activation) 
])input_image = Input(shape=input_shape)
binary_code = base_hash_network(input_image)hash_model = Model(inputs=input_image, outputs=binary_code)
hash_model.compile(optimizer='adam', loss='mse')

在这个模型中,我们使用了一个Lambda层,它应用了一个简单的阈值函数,将网络的输出转换为二进制形式。

4. 深度度量与深度散列的比较

  • 计算效率: 深度散列的主要优势在于检索效率。一旦为数据生成了二进制hash码,检索过程仅需要计算汉明距离,这是一个非常快速的操作。而深度度量则需要在度量空间中计算距离,这在大规模数据集中可能较慢。

  • 检索质量: 深度度量学习往往在检索质量上具有优势,因为它直接学习了数据之间的相似性。而深度散列则可能因为二进制限制丢失一些信息。

  • 可扩展性: 深度散列非常适合大规模图像检索任务,因为二进制码可以非常紧凑。而深度度量需要更多的存储空间来保存特征。

  • 应用场景: 对于需要高效检索的大规模应用,深度散列是首选。而对于需要更高检索质量的应用,深度度量可能更适合。

结论

深度度量学习和深度散列学习在图像检索中都有其优点和应用场景。选择哪一种方法取决于特定的应用需求和优先级。对于需要高效和大规模检索的应用,深度散列是更好的选择;而对于对检索质量有较高要求的应用,深度度量可能更为合适。

具体过程请下载完整项目。

5. 融合深度度量与深度散列的策略

尽管深度度量学习和深度散列学习各有优势,但在某些应用中,将两者结合使用可以实现更好的检索效果。

5.1 双模型策略

一个简单的策略是独立地训练深度度量模型和深度散列模型,并在检索时首先使用深度散列进行快速筛选,然后利用深度度量进行精确匹配。

代码示例4: 双模型策略

def dual_model_retrieval(query_image, database_images, hash_model, metric_model):# Step 1: 使用深度散列模型进行快速筛选query_hash = hash_model.predict(query_image)candidates = []for db_image in database_images:db_hash = hash_model.predict(db_image)hamming_distance = np.sum(np.bitwise_xor(query_hash, db_hash))if hamming_distance < threshold:  # threshold可以根据实际需要调整candidates.append(db_image)# Step 2: 使用深度度量模型进行精确匹配query_feature = metric_model.predict(query_image)best_match = Nonebest_distance = float('inf')for candidate in candidates:candidate_feature = metric_model.predict(candidate)distance = np.linalg.norm(query_feature - candidate_feature)if distance < best_distance:best_distance = distancebest_match = candidatereturn best_match

5.2 联合训练策略

为了实现更深入的整合,可以考虑在同一个神经网络中结合深度度量和深度散列的目标。具体来说,网络的损失函数可以是深度度量损失和深度散列损失的加权和。

6. 优化策略和注意事项

  • 负采样: 在训练时,选择难分类的负样本(与查询图像不相似的图像)可以提高模型的鉴别性。

  • 数据增强: 对训练数据进行随机旋转、裁剪、颜色变换等操作,可以提高模型的泛化能力。

  • 多任务学习: 除了图像检索任务外,还可以考虑将其他任务,如分类或分割,与当前任务一同训练,从而提高模型性能。

  • 注意事项:尽管深度散列可以大大提高检索效率,但也可能因为二进制编码的限制导致信息损失。因此,需要仔细选择散列码的长度,确保它既可以表示足够的信息,又不会过于冗长。

结论

深度度量学习和深度散列学习为图像检索提供了强大的工具。根据应用的具体需求,可以选择使用其中之一,或者结合两者以获得最佳效果。在实际应用中,还需要考虑其他因素,如训练数据的质量、模型的复杂性以及计算资源,以确保检索系统的有效性和效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/44333.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis中常见的缓存穿透、缓存击穿、缓存雪崩、缓存预热解决方案

文章目录 一、缓存穿透1. 什么是缓存穿透2. 解决方案2.1 无效的key存放到Redis2.2 引入布隆过滤器2.3 如何选择&#xff1a; 二、缓存击穿1. 什么是缓存击穿2. 解决方案 三、缓存雪崩1. 什么是缓存雪崩2. 解决方案2.1 均匀过期2.2 热点数据缓存永远不过期2.3 采取限流降级的策略…

零基础如何学习 Web 安全,如何让普通人快速入门网络安全?

前言 网络安全现在是朝阳行业&#xff0c;缺口是很大。不过网络安全行业就是需要技术很多的人达不到企业要求才导致人才缺口大 【一一帮助安全学习&#xff08;网络安全面试题学习路线视频教程工具&#xff09;一一】 初级的现在有很多的运维人员转网络安全&#xff0c;初级…

Opencv 图像的读取与写入

目录 导入cv2 读取图像数据 创建一个窗口 waitKey方法 关闭所有窗口 完整示例 保存图片 示例 导入cv2 # 导入opencv包 import cv2 读取图像数据 cv2.imread(path, flag) 参数说明&#xff1a; path&#xff1a;要读取的图像文件的路径。 flag&#xff08;可选&#…

Linux0.11内核源码解析-truncate.c

truncate文件只要实现释放指定i节点在设备上占用的所有逻辑块&#xff0c;包括直接块、一次间接块、二次间接块。从而将文件节点对应的文件长度截为0&#xff0c;并释放占用的设备空间。 索引节点的逻辑块连接方式 释放一次间接块 static void free_ind(int dev,int block) {…

听GPT 讲Prometheus源代码--rules

Prometheus的rules目录主要包含规则引擎和管理规则的文件: engine.go 该文件定义了规则引擎的接口和主要结构,包括Rule,Record,RuleGroup等。它提供了规则的加载、匹配、评估和结果记录的功能。 api.go 定义了用于管理和查询规则的RESTful API,包括获取、添加、删除规则等方法。…

机器学习深度学习——BERT(来自transformer的双向编码器表示)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——transformer&#xff08;机器翻译的再实现&#xff09; &#x1f4da;订阅专栏&#xff1a;机器学习&am…

《Go 语言第一课》课程学习笔记(八)

基本数据类型 Go 原生支持的数值类型有哪些&#xff1f; Go 语言的类型大体可分为基本数据类型、复合数据类型和接口类型这三种。 其中&#xff0c;我们日常 Go 编码中使用最多的就是基本数据类型&#xff0c;而基本数据类型中使用占比最大的又是数值类型。 整型 Go 语言的…

理解二分查找的单调性与局部舍弃性

二分是一种很有用的优化途径&#xff0c;因为它能够导致减半运算&#xff0c;而对于能否二分&#xff0c;有一个界定标准&#xff1a;状态的决策过程或者序列是否满足单调性或者局部舍弃性。序列指的是像数组这些能够用下标索引表示的容器。单调性指的是&#xff0c;各个元素能…

学习笔记:Opencv实现限制对比度得自适应直方图均衡CLAHE

2023.8.19 为了完成深度学习的进阶&#xff0c;得学习学习传统算法拓展知识面&#xff0c;记录自己的学习心得 CLAHE百科&#xff1a; 一种限制对比度自适应直方图均衡化方法&#xff0c;采用了限制直方图分布的方法和加速的插值方法 clahe&#xff08;限制对比度自适应直方图…

ReactNative进阶(三十四):ipa Archive 阶段报错error: Multiple commands produce问题修复及思考

文章目录 一、前言二、问题描述三、问题解决四、拓展阅读五、拓展阅读 一、前言 在应用RN开发跨平台APP阶段&#xff0c;从git中拉取项目&#xff0c;应用Jenkins进行组包时&#xff0c;发现最终生成的ipa安装包版本号始终与项目中设置的版本号不一致。 二、问题描述 经过仔…

【数学】CF1242 A

Problem - 1242A - Codeforces 题意&#xff1a; 思路&#xff1a; Code&#xff1a; #include <bits/stdc.h>#define int long longusing i64 long long;constexpr int N 2e3 10; constexpr int M 2e3 10; constexpr int mod 998244353; constexpr int Inf 1e1…

Rabbitmq的应用场景

Rabbitmq的应用场景 一、异步处理 场景说明&#xff1a;用户注册后&#xff0c;需要发注册邮件和注册短信,传统的做法有两种 1.串行的方式 2.并行的方式 ​​串行方式​​: 将注册信息写入数据库后,发送注册邮件,再发送注册短信,以上三个任务全部完成后才返回给客户端。 这有…

什么是Vue的指令钩子函数?有哪些主要的指令钩子函数?

1、什么是Vue的指令钩子函数&#xff1f; Vue的指令钩子函数是指在Vue实例或组件中&#xff0c;用于处理指令的钩子函数。这些钩子函数在指令被绑定到DOM元素时被调用&#xff0c;用于执行一些特定的操作。 Vue的指令钩子函数包括以下几种&#xff1a; created&#xff1a;在…

apex安装出错:TypeError unsupported operand type(s) for +: “NoneType“ and “str“

Windows 10 环境下安装apex报错&#xff1a;TypeError unsupported operand type(s) for : “NoneType“ and “str“ 1、首先apex不能直接pip install apex安装。 2、具体安装步骤&#xff1a;【python】【深度学习】apex的安装_apex python_愿东大没有食堂的博客-CSDN博客 …

使用OpenCV与深度学习从视频和图像中精准识别人脸: Python实践指南

第一部分: 引言与背景 人脸识别已经成为了当代技术领域中最热门和广泛应用的话题之一。从智能手机的解锁功能到机场的安全检查&#xff0c;人脸识别技术无处不在。在这篇文章中&#xff0c;我们将使用Python中的OpenCV库和深度学习模型&#xff0c;深入探讨如何从视频和图像中…

Linux命令

操作系统管理硬件设备&#xff0c;并为用户和应用程序提供一个简单的接口&#xff0c;以便于使用。&#xff08;作为中间人&#xff0c;连接软件和硬件&#xff09;不同应用领域的主流操作系统 桌面操作系统 Windows系列:&#xff1a;用户群体大 macOS&#xff1a;适合于开发人…

GitLab与GitLab Runner安装(RPM与Docker方式),CI/CD初体验

背景 GitLab 是一个强大的版本控制系统和协作平台&#xff0c;记录一下在实际工作中关于 GitLab 的安装使用记录。 一开始使用 GitLab 时&#xff0c;是在 CentOS7 上直接以 rpm 包的方式进行安装&#xff0c;仅作为代码托管工具来使用&#xff0c;版本&#xff1a; 14.10.4 …

Progressive-Hint Prompting Improves Reasoning in Large Language Models

本文是LLM系列的文章&#xff0c;针对《Progressive-Hint Prompting Improves Reasoning in Large Language Models》的翻译。 渐进提示改进了大型语言模型中的推理 摘要1 引言2 相关工作3 渐进提示Prompting4 实验5 结论6 实现细节7 不足与未来工作8 广泛的影响9 具有不同提示…

类之间的比较

作者简介&#xff1a; zoro-1&#xff0c;目前大一&#xff0c;正在学习Java&#xff0c;数据结构等 作者主页&#xff1a; zoro-1的主页 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01;&#x1f496;&#x1f496; 类之间的比较 固定需求式比较器 固定需求式 通过…

FPGA: RS译码仿真过程

FPGA: RS译码仿真过程 在上一篇中记录了在FPGA中利用RS编码IP核完成信道编码的仿真过程&#xff0c;这篇记录利用译码IP核进行RS解码的仿真过程&#xff0c;带有程序和结果。 1. 开始准备 在进行解码的过程时&#xff0c;同时利用上一篇中的MATLAB仿真程序和编码过程&#x…