Apollo进阶课程⑰丨Apollo感知之旅——传感器选择和安装

目录

1.激光雷达

2.相机

3.Radar毫米波

4.安装传感器


原文链接:进阶课程⑰丨Apollo感知之旅——传感器选择和安装 

上周阿波君为大家详细介绍了进阶课程⑯ Apollo感知之旅——感知概况

传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求,它是实现自动检测和自动控制的首要环节。

从智能驾驶发展趋势来看,企业应用于自动驾驶汽车的传感器主要有以下几种:图像传感器、激光雷达、毫米波雷达超声波雷达以及生物传感器。它们依据各自不同的产品属性,在自动驾驶汽车行驶过程中各主不同的功能,以保证自动驾驶汽车的正常运行。

由于智能驾驶车辆只能实现部分场景的自动驾驶,为了能适应更多场景,一方面,可以配置性能更好或数量更多的环境感知传感器;另一方面,从降低整车成本考虑,还可以从传感器的布置优化方向入手,充分发挥传感器的性能。

本周阿波君将与大家分享Apollo感知之旅——传感器选择和安装。下面,我们一起进入进阶课程第17期。


本节主要介绍无人车感知系统硬件的搭建,重点讲述传感器的选择和标定。目前,无人车中使用的传感器主要有激光雷达Lidar,相机和毫米波雷达Radar。

1.激光雷达

激光雷达的测距原理是激光头发射光束,打到障碍物上反射回来,到接收器接收到之反射信号的时间间隔乘以光速再除以二得到障碍物的距离,叫做TOF(Time of flight,飞行时间测距法)。

激光雷达传感器的好处在于自带光源不受外界干扰,白天晚上都可以,而且测距准确度高(厘米级的精度)。其缺点是多线激光雷达扫描还比较稀疏,尤其是当障碍物距离比较远的时候,因此,激光雷达目前并不适合做识别任务。

另外,激光雷达需要发射激光,功率限制其不能发射很远,发射太远反弹回来的信号就会很弱。目前,64线激光雷达的感知距离只有60~70米,对于高速行驶的无人车还不够。


2.相机

相机是最像人的一个传感器。它是被动式的,接受自然可见光的反射最后成像,受光照影响很大,白天的算法在晚上使用,开路灯和不开路灯的对感知结果影响很大,所以对算法研发挑战很大。它的优点是可以稠密感知,比如说现在的1080p图像,可以感知所有细节。

另外通过配置焦距,相机可以感知很远距离的物体,例如可以看到几百米外的物体。相机传感器的缺点是单目相机测距不准,无法做到激光雷达厘米级的测距精度。


3.Radar毫米波

毫米波雷达的原理和激光类似,只不过发射的是毫米波。由于它也是主动式感知设备,不太受天气、光照的影响。同时毫米波雷达还有多普勒频移效应可以测量与障碍物之间的相对速度。

其优点是测距、测速比较准,缺点是噪点很多,例如在空旷的地方反馈很多的回波,实际可能是路面的反馈信号而不是障碍物。其次它对于非金属的反射信号比较弱,召回比较低,例如在它面前走过行人有可能漏掉。最后毫米波雷达也是稀疏感知,无法做识别任务。

除了以上三种常见的传感器,还有一些用的相对少的传感方法,例如超声波,高精地图,Image-Lidar

超声波的感知距离有限,对金属感知距离3米左右,对非金属只有1~2米。此外它的发射头是扇形的,扇形之外无法感知。

高精地图是先把静态元素储存好做成先验知识。它的优点是可以无差错的精确感知,减轻现场感知负担和依赖,其缺点是加重了整个系统对高精度地图和高精度定位的依赖。

Image-Lidar同时集结了激光和图像的好处,接收器同时对可见光、激光都有响应。

下表给出了各种传感器的特性。


4.安装传感器

                                                                                                         传感器的安装

上图给出的是自动驾驶汽车的传感器安装示意图。传感器的安装对于后续步骤至关重用,需要科学、合理的安装。

首先需要对车辆建立,可以由厂家提供CAD模型,在真正安装之前,需要在软件环境里面放传感器,考虑以下因素对传感器的安装位置做出最合适的决定。第一是障碍物遮挡情况,这就是为什么很多无人驾驶车的传感器安装在车顶的原因。第二是方便传感器融合。传感器的融合需要不同传感器在视野上有重叠,否则很难进行传感器融合。

                                                                                                Nvidia的Drive px平台的宣传图

上图是Nvidia的Drive px平台的宣传图,给出了每个传感器的感知距离和角度,在实际安装过程中,也需要到达这样的效果。以上是从感知的角度出发来考虑如何安装传感器。除此之外,传感器的安装还需要从整车的角度考虑,需要考虑安全美观清洗等因素。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439898.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2.2)深度学习笔记:优化算法

目录 1)Mini-batch gradient descent(重点) 2)Understanding mini-batch gradient descent 3)Exponentially weighted averages 4)Understanding exponetially weighted averages 5)Bias c…

Apollo进阶课程⑱丨Apollo感知之旅——传感器标定

目录 传感器标定 标定的目的 传感器标定算法 标定案例解析 3D标定间制作 Cmaera-to-Camera外参标定 Lidar-to-Camera外参标定 Lidar-to-Lidar外参标定 Lidar内参标定 Lidar-to-GPS外参标定 自然场景的Lidar-to-Camera外参标定 自然场景的Bifocal Camera外参标定 C…

一步步编写操作系统 15 CPU与外设通信——IO接口,下

既然都说到IO接口了,不知道各位有没有疑问,cpu是怎样访问到IO接口呢?肯定得有个链路吧?什么?有隐约听到有同学开玩笑说:cpu用无线访问其它设备。哈哈,不知道各位听说过没有,无线的终…

Telnet端口连接Linux服务器失败

在ubuntu写了个服务器端口号是666 ,ip地址是192.168.96.129 在windows用telnet无法连接上 首先检查windows telnet服务是否打开 Windows 10操作系统上使用telnet命令(图文)_时间-CSDN博客_windows使用telnet命令 测试网络是否通:…

重磅 | 完备的 AI 学习路线,最详细的资源整理!

本文转自微信公众号:Datawhale(强烈推荐) 原创: AIUnion Datawhale 今天 【导读】 本文由知名开源平台,AI技术平台以及领域专家:Datawhale,ApacheCN,AI有道和黄海广博士联合整理贡献…

Windows/Linux 下使用telnet发送消息

Windows下使用telnet 1.首先打开cmd命令行连接上服务器端口 连不上可以参考这篇 Telnet端口连接Linux服务器失败_m0_46480482的博客-CSDN博客 telnnt <ip地址> <端口号> 2. 连接成功后&#xff0c;会发现是一片黑的 按住 ctrl ] 可以招出提示 输入 &#x…

Apollo进阶课程⑲丨Apollo感知之旅——感知算法

目录 点云感知 启发式方法&#xff1a;NCut 深度学习方法&#xff1a;CNNSeg 视觉感知 CNN检测 CNN分割 后处理 红绿灯感知 基于深度学习的红绿灯感知模块 Radar感知 超声波感知 原文链接&#xff1a;进阶课程⑲丨Apollo感知之旅——感知算法 感知是自动驾驶的第一环…

动手学PaddlePaddle(0):新版本PaddlePaddle安装

目录 0.引言 1.环境 2.Windows下安装 安装Python 安装PaddlePaddle 0.引言 今天介绍如何安装新版本的PaddlePaddle&#xff0c;现在最新版的PaddlePaddle是指Fluid版&#xff0c;Fluid可以让用户像Pytorch和TensorFlow Eager Execution一样执行程序&#xff0c;也就是说P…

一步步编写操作系统 18 操作显卡,显存,显示器 下

接上回&#xff0c;大家看下显卡各种模式的内存分布。 各外部设备都是通过软件指令的形式与上层接口通信的&#xff0c;显卡&#xff08;显示适配器&#xff09;也不例外&#xff0c;所以它也有自己的bios。位置是0xC0000到0xC7FFF。显卡支持三种模式&#xff0c;文本模式、黑白…

VMware 安装VMware Tools

想要在linux和windows之间复制粘贴&#xff0c;把之前一直没有下的vmwaretools的下载过程记录一下。 1.左上角菜单 ->虚拟机 ->安装 vmware tools (我已经点过了所以是取消安装) 2.桌面多了一个VMware tools &#xff0c;点进去看一下位置&#xff0c;复制一下tar.gz的文…

Apollo进阶课程⑳丨Apollo感知之旅——机器学习与感知的未来

目录 1机器学习 可解释性是否需要 其它算法 2感知的未来 Sensor迭代 深度学习仿真数据AI芯片 智能交通设施 3思考 原文链接&#xff1a;进阶课程⑳丨Apollo感知之旅——机器学习与感知的未来 自动驾驶感知中的机器学习最大问题在于系统对模块的要求与普通的机器学习不同…

一步步编写操作系统 19 改进MBR,直接操作显卡

到目前为止&#xff0c;说了一部分有关显存的内容&#xff0c;这对于一般的输出来说已经足够了&#xff0c;下面咱们可以尝试写显存啦。我们将之前MBR改造一下&#xff0c;保留滚屏的操作&#xff0c;只修改有关输出的部分。即把通过bios的输出改为通过显存&#xff0c;你会发现…

Apollo进阶课程㉑丨Apollo规划技术详解——Basic Motion Planning and Overview

原文链接&#xff1a;进阶课程㉑丨Apollo规划技术详解——Basic Motion Planning and Overview 运动规划&#xff08;Motion Planning&#xff09;就是在给定的位置A与位置B之间为机器人找到一条符合约束条件的路径。这个约束可以是无碰撞、路径最短、机械功最小等。具体的案例…

ROS机器人导航仿真(kinetic版本)

准备工作&#xff1a; ubuntu 16.04系统;ROS kinetic版本;ROS包turtlebot,导航包rbx1,模拟器arbotix&#xff0c;可视化rviz 1、安装ubuntu 16.04系统与安装ROS kinetic版本自行百度安装。一下链接可作为参考。 http://blog.csdn.net/weicao1990/article/details/52575314 2…

1.深度学习练习:Python Basics with Numpy(选修)

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization 目录 1 - Building basic functions with numpy 1.1 - np.exp(), sigmoid function 1.2 - Sigmoid gradient …

一步步编写操作系统 20 x86虚拟bochs一般用法 上

bochs一般用法 bochs是一个开源x86 虚拟机软件。在它的实现中定义了各种数据结构来模拟硬件&#xff0c;用软件模拟硬件缺点是速度比较慢&#xff0c;毕竟全是软件来模拟&#xff0c;您想&#xff0c;虚拟机还要在软件中模拟各种中断&#xff0c;能不慢吗。不过它的功能非常强…

2.3)深度学习笔记:超参数调试、Batch正则化和程序框架

目录 1&#xff09;Tuning Process 2&#xff09;Using an appropriate scale to pick hyperparameters 3&#xff09;Hyperparameters tuning in practice: Pandas vs. Caviar 4&#xff09;Normalizing activations in a network&#xff08;重点&#xff09; 5&#xf…

2.深度学习练习:Logistic Regression with a Neural Network mindset

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ You will learn to: Build the general architecture of a learning algorithm, including: Initializing para…

JVM内存区域详解

Java中虚拟机在执行Java程序的过程中会将它所管理的内存区域划分为若干不同的数据区域。下面来介绍几个运行时数据区域。 一、程序计数器 1.1 简述 程序计数器&#xff08;Program Counter Register&#xff09;是一块较小的内存空间&#xff0c;它的作用可以看做是当前线程所…

3.深度学习练习:Planar data classification with one hidden layer

本文节选自吴恩达老师《深度学习专项课程》编程作业&#xff0c;在此表示感谢。 课程链接&#xff1a;https://www.deeplearning.ai/deep-learning-specialization/ You will learn to: Implement a 2-class classification neural network with a single hidden layerUse unit…