Apollo进阶课程⑳丨Apollo感知之旅——机器学习与感知的未来

目录

1机器学习

可解释性是否需要

其它算法

2感知的未来

Sensor迭代

深度学习+仿真数据+AI芯片

智能交通设施

3思考


原文链接:进阶课程⑳丨Apollo感知之旅——机器学习与感知的未来

自动驾驶感知中的机器学习最大问题在于系统对模块的要求与普通的机器学习不同。

从自动驾驶安全性角度考虑,系统对感知的准确率、召回率和响应延时要求很高。例如在自动驾驶中的感知机器学习出现一些障碍物的漏检、误检会带来安全问题。漏检会带来碰撞,影响事故;误检会造成一些急刹,带来乘车体验的问题。同时要求低延时,如果一秒以后才获得感知结果,可能无人车已经碰上障碍物。

上周阿波君为大家详细介绍了「进阶课程⑲Apollo感知之旅——感知算法」。

感知算法根据使用的传感器不同而不同。根据激光雷达Lidar点云感知,详细介绍了两个检测算法启发式的Ncut深度学习算法CNNSeg。对于视觉感知,深度学习了检测和分割技术、跟踪技术,2D-to-3D技术以及多相机融合技术,以及红绿灯检测算法、Radar检测和超声波检测算法。

本周阿波君将与大家分享Apollo感知之旅——感知中的机器学习。下面,我们一起进入进阶课程第20期。


1机器学习

机器学习里面存在一个普遍的假设,训练集和测试集是独立同分布的,如果测试和训练没有任何关系,测试效果是没有任何保证的。但是无人车感知的训练集是封闭的,而测试集是开放的。

测试是在开放道路进行的,如果遇到新的障碍物,在训练中从来没见过,怎么处理?例如,在城市道路上很少见到卡车,但是高速会遇到很多卡车,而且卡车上的东西也很多,如果机器学习模型没见过这些障碍物,很有可能带来一些错误。

可解释性是否需要

无人车的安全需要可解释,出现一个Bad case需要说清责任,需要搞清Bad case是由什么原因导致的,以便改进。

自动驾驶中深度学习模型需要更好的可解释性,归结为如何评估模型让用户知道模型是安全的?模型更新后如何做回归测试?模型的应用边界在哪里?目前,大家认为可解释性可以通过测试来体现,如果大量测试得到相同的结果,那么原理是不是真正的可解释也就没那么重要。


其它算法

在感知模块中,除了做基本的检测、分割之外,还有后处理阶段等由公式表示的几何计算问题,是不需要深度学习的。另外,Common  sense也不需要深度学习,而且深度学习的效果不好,我们需要其他算法。那么,深度学习模型带来一个结果,其他启发算法给一个结果,怎么来融合?现在主要是基于Double check来提升安全性,还需要其他方法来进行更好的融合。

除了深度学习还需要其他的机器学习方法。如果数据量小,特征很难从原始数据学习,深度学习的效果可能就受到影响,因此诸如SVM或者随机森林这些机器学习算法,可能需要结合场景选择。


2感知的未来

Sensor迭代

如果在自动驾驶的研究中,发现某一类传感器在感知或者其他模块中具有很大的价值。那么,整个资本市场会投入很多人力、财力研发传感器。随着量产之后,传感器的成本就会大幅下降,更新换代就比较快。

深度学习+仿真数据+AI芯片

深度学习已经证明了在感知中有很大的作用,但是计算量很大,专门研究车载AI芯片是对这一问题的很好解决方案。

现在很耗时的CNN模型以后都不是瓶颈,而且定制AI芯片的功耗可以足够低,满足车载需求。深度学习需要大量数据的问题,可以通过仿真来弥补。目前,点云仿真相对简单一些,图像仿真相对困难点。如果仿真这条路可以走通,那么仿真+深度学习不断循环迭代,是非常有前景的。

智能交通设施

目前,自动驾驶都是在车上安装传感器进行感知,感知的范围、鲁棒性都有待提高。如果将这套传感器布置在道路上、灯上,让它们来感知,然后将实时结果传输给无人车。如果车上的传感器失灵,那么路面上的传感器会告知无人车障碍物信息,保证系统安全性。另外在驾驶环境中部署传感器可以拓展感知距离,做到足够安全,提前告知远处的信息。


3思考

这里列了五个课后思考题:

  • 前面技术介绍时说的开放问题,大家可以思考。例如Corner  case的处理。
  • 前向和后向的安全感知距离如何计算?
  • 延时是如何来影响自动驾驶安全的?
  • ACC自适应巡航的功能是如何实现的?ACC这些功能主要是用哪些传感器来实现的?原理是什么?
  • 推导Pitch角对距离误差的影响,假设Pitch角标定的时候,有0.1度的误差,请推导对距离估计有多大的影响?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439878.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一步步编写操作系统 19 改进MBR,直接操作显卡

到目前为止,说了一部分有关显存的内容,这对于一般的输出来说已经足够了,下面咱们可以尝试写显存啦。我们将之前MBR改造一下,保留滚屏的操作,只修改有关输出的部分。即把通过bios的输出改为通过显存,你会发现…

Apollo进阶课程㉑丨Apollo规划技术详解——Basic Motion Planning and Overview

原文链接:进阶课程㉑丨Apollo规划技术详解——Basic Motion Planning and Overview 运动规划(Motion Planning)就是在给定的位置A与位置B之间为机器人找到一条符合约束条件的路径。这个约束可以是无碰撞、路径最短、机械功最小等。具体的案例…

ROS机器人导航仿真(kinetic版本)

准备工作: ubuntu 16.04系统;ROS kinetic版本;ROS包turtlebot,导航包rbx1,模拟器arbotix,可视化rviz 1、安装ubuntu 16.04系统与安装ROS kinetic版本自行百度安装。一下链接可作为参考。 http://blog.csdn.net/weicao1990/article/details/52575314 2…

1.深度学习练习:Python Basics with Numpy(选修)

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization 目录 1 - Building basic functions with numpy 1.1 - np.exp(), sigmoid function 1.2 - Sigmoid gradient …

一步步编写操作系统 20 x86虚拟bochs一般用法 上

bochs一般用法 bochs是一个开源x86 虚拟机软件。在它的实现中定义了各种数据结构来模拟硬件,用软件模拟硬件缺点是速度比较慢,毕竟全是软件来模拟,您想,虚拟机还要在软件中模拟各种中断,能不慢吗。不过它的功能非常强…

2.3)深度学习笔记:超参数调试、Batch正则化和程序框架

目录 1)Tuning Process 2)Using an appropriate scale to pick hyperparameters 3)Hyperparameters tuning in practice: Pandas vs. Caviar 4)Normalizing activations in a network(重点) 5&#xf…

2.深度学习练习:Logistic Regression with a Neural Network mindset

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization/ You will learn to: Build the general architecture of a learning algorithm, including: Initializing para…

JVM内存区域详解

Java中虚拟机在执行Java程序的过程中会将它所管理的内存区域划分为若干不同的数据区域。下面来介绍几个运行时数据区域。 一、程序计数器 1.1 简述 程序计数器(Program Counter Register)是一块较小的内存空间,它的作用可以看做是当前线程所…

3.深度学习练习:Planar data classification with one hidden layer

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization/ You will learn to: Implement a 2-class classification neural network with a single hidden layerUse unit…

一步步编写操作系统 11 实模式下程序分段的原因

cpu中本来是没有实模式这一称呼的,是因为有了保护模式后,为了将老的模式区别开来,所以称老的模式为实模式。这情况就像所有同学坐在同一个教室里,本来没有老同学这一概念,但某天老师领着一个陌生人进入教室并和大家宣布…

4.深度学习练习:Building your Deep Neural Network: Step by Step(强烈推荐)

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization/ fter this assignment you will be able to: Use non-linear units like ReLU to improve your modelBuild a d…

一步步编写操作系统21 x86虚拟机bochs 跟踪bios

为了让大家更好的理解bios是怎样被执行的,也就是计算机中第一个软件是怎样开始的,咱们还是先看下图3-17。在图的上面第5行,显示的是下一条待执行的指令,这是程序计数器(PC)中的值,在x86上的程序…

【CodeForces - 361D】Levko and Array (二分,dp)

题干: Levko has an array that consists of integers: a1, a2, ... , an. But he doesn’t like this array at all. Levko thinks that the beauty of the array a directly depends on value c(a), which can be calculated by the formula: The less value…

5.深度学习练习:Deep Neural Network for Image Classification: Application

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization/ After this assignment you will be able to: Build and apply a deep neural network to supervised learning…

【CodeForces - 689D】Friends and Subsequences(RMQ,二分 或单调队列)

题干: Mike and !Mike are old childhood rivals, they are opposite in everything they do, except programming. Today they have a problem they cannot solve on their own, but together (with you) — who knows? Every one of them has an integer seque…

6.深度学习练习:Initialization

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization/ 目录 1 - Neural Network model 2 - Zero initialization 3 - Random initialization(掌握&…

【CodeForces - 602D】Lipshitz Sequence(思维,单调栈,斜率单调性)

题干: A function is called Lipschitz continuous if there is a real constant Ksuch that the inequality |f(x) - f(y)| ≤ K|x - y| holds for all . Well deal with a more... discrete version of this term. For an array , we define its Lipschi…

7.深度学习练习:Regularization

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization/ 目录 1-Package 2 - Non-regularized model 3 - L2 Regularization(掌握) 4-Dropou…

深入详解JVM内存模型与JVM参数详细配置

本系列会持续更新。 JVM基本是BAT面试必考的内容,今天我们先从JVM内存模型开启详解整个JVM系列,希望看完整个系列后,可以轻松通过BAT关于JVM的考核。 BAT必考JVM系列专题 1.JVM内存模型 2.JVM垃圾回收算法 3.JVM垃圾回收器 4.JVM参数详解 5…

8.深度学习练习:Gradient Checking

本文节选自吴恩达老师《深度学习专项课程》编程作业,在此表示感谢。 课程链接:https://www.deeplearning.ai/deep-learning-specialization/ 目录 1) How does gradient checking work? 2) 1-dimensional gradient checking 3) N-dimensional gradie…