【Python学习】内置函数(不断更新)

关于常用在for循环中的range函数

python range() 函数可创建一个整数列表,一般用在 for 循环中。

函数语法
range(start, stop[, step])
参数说明:

start: 计数从 start 开始。默认是从 0 开始。例如range(5)等价于range(0, 5);
stop: 计数到 stop 结束,但不包括 stop。例如:range(0, 5) 是[0, 1, 2, 3, 4]没有5
step:步长,默认为1。例如:range(0, 5) 等价于 range(0, 5, 1)


实例
>>> range(10)        # 从 0 开始到 10
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)     # 从 1 开始到 11
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)  # 步长为 5
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)  # 步长为 3
[0, 3, 6, 9]
>>> range(0, -10, -1) # 负数
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
[]
以下是 range 在 for 中的使用,循环出runoob 的每个字母:>>> x = 'runoob'
>>> for i in range(len(x)) :
...     print(x[i])
...
r
u
n
o
o
b
>>>

内置函数:id() 

可以返回一个对象的内存地址,经常用来在复制一个变量后,检验两个变量之间是引用的关系还是调用了.copy()的深复制。

 

内置函数:list()

可以将一个元组快速的转化成list形式:

aTuple = (123, 'xyz', 'zara', 'abc');
aList = list(aTuple)

 

内置函数:type()

也是很常用的一个函数,在编译出错时经常用来进行调试工作,因为这样可以快速找到具体是哪个地方可能元素类型不一致,这样可以很快的检查出来。

 

内置函数:str()

可以将元素的内容整体转化成一个字符串,

 

内置函数:len()

调用这个函数可以返回对象长度。对象可以是list,可以是字符串,可以是narray

 

内置函数:set()

可以用来去重。类似C++

 

内置函数:dir()

查看可用属性,在忘记函数api调用接口的时候,十分实用。

以上部分内容参考自:

https://www.runoob.com/python/python-built-in-functions.html

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439523.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python学习】 简单语法与常见错误(持续更新)

关于单引号和双引号 当输出的字符串内部没有单引号的时候,外面可以用单引号, 但是如果内部有了单引号,那么外部只能用双引号。 dict {Name: Zara, Age: 7, Class: First} print(dict) print (dict[Name]: , dict[Name]) print ("dic…

一步步编写操作系统 78 intel汇编与ATT汇编语法区别

本节咱们介绍下intel汇编语法和at&t汇编语法的区别。 以上表中未列出这两种语法在内存寻址方面的差异,个人觉得区别还是很大的,下面单独说说。 在Intel语法中,立即数就是普通的数字,如果让立即数成为内存地址,需要…

重读经典:《Masked Autoencoders Are Scalable Vision Learners》

MAE 论文逐段精读【论文精读】这一次李沐博士给大家精读的论文是 MAE,这是一篇比较新的文章,2021年11月11日才上传到 arXiv。这篇文章在知乎上的讨论贴已经超过了一百万个 view,但是在英文社区,大家反应比较平淡一点,R…

【Python学习日志】 - Numpy包

NumPy是什么? 使用Python进行科学计算的基础包,在数据分析的时候比较常用到矩阵计算。这时太多的Np属性不记得,所以方便自己使用把一些常用的Np属性汇总记录一下使用的时候方便查找。 ndarray.ndim 阵列的轴数(尺寸)…

详解协同感知数据集OPV2V: An Open Benchmark Dataset and Fusion Pipeline for Perception with V2V Communication

在《详解自动驾驶仿真框架OpenCDA: An Open Cooperative Driving Automation Framework Integrated with Co-Simulation》 一文中介绍了自动驾驶仿真框架 OpenCDA。本文将介绍论文作者另一篇最新工作 OPV2V,论文收录于 ICRA2022。 OPV2V 数据集主要 feature 有&…

【Python学习】 - 如何在Spyder中弹出plot绘图窗口而不是在Console中绘图

依次选择这几项: 点击ok确认。 注意:点击ok之后不会立即生效,重启Spyder之后才会生效

mysql系列:加深对脏读、脏写、可重复读、幻读的理解

关于相关术语的专业解释,请自行百度了解,本文皆本人自己结合参考书和自己的理解所做的阐述,如有不严谨之处,还请多多指教。 **不可重复读的重点是修改: **同一事务,两次读取到的数据不一样。 幻读的重点在于新增或者…

重读经典(点云深度学习开山之作):《Deep learning on point clouds for 3D scene understanding》(持续更新中)

本文介绍的是 PointNet 作者的博士论文:3D场景理解中的点云深度学习。从上图可以看到,整个博士论文主要贡献有两块:一是点云深度学习的网络架构(PointNet 和 PointNet);二是在3D场景理解中的应用&#xff0…

Coursera自动驾驶课程第17讲:An Autonomous Vehicle State Estimator

在第16讲《Coursera自动驾驶课程第16讲:LIDAR Sensing》我们学习了自动驾驶目前常用的3D 传感器,激光雷达,了解了激光雷达的工作原理,掌握了对点云数据的操作以及如何使用点云配准方法来进行汽车定位。 回顾一下,在本…

!何为脏读、不可重复读、幻读

2.0、前言 事务的隔离性是指多个事务并发执行的时候相互之间不受到彼此的干扰的特性,隔离性是事务ACID特性中的I,根据隔离程度从低到高分为Read Uncommitted(读未提交),Read Committed(读已提交&#xff0…

【转】JPA、Hibernate和Mybatis区别和总结

很多人都用过java的数据库连接池C3P0,但官方没有说明名称的由来。 据传闻:连接池作者是《星球大战》迷,C3P0就是其中的一个机器人,并且这个名称中包涵connection 和pool的单词字母。因此叫这个名字(根据网友提醒&…

详解3D物体检测模型: Voxel Transformer for 3D Object Detection

本文介绍一个新的的3D物体检测模型:VoTr,论文已收录于ICCV 2021。 这是第一篇使用 voxel-based Transformer 做3D 主干网络,用于点云数据3D物体检测。由于有限的感受野,传统的 3D 卷积网络检测器(voxel-based&#xff…

一步步编写操作系统 65 标准调用约定stdcall 汇编实战

因为c语言遵循的调用约定是cdecl,咱们也自然要遵守cdecl约定了。不过为了起到对比的作用,除了介绍cdecl外,也会介绍下stdcall。 既然咱们用的是调用约定是cdecl,那对它的介绍最好让它离下一节的内容近一些,所以先说一…

Coursera自动驾驶课程第18讲:The Planning Problem

在第17讲《Coursera自动驾驶课程第17讲:An Autonomous Vehicle State Estimator》 我们学习了如何使用多传感器融合进行自车定位,以及传感器的内外参标定和时间同步,我们还讨论了在实际应用中常遇到的问题。 从本讲开始我们将学习一个新的模…

详解3D物体检测模型:Focal Sparse Convolutional Networks for 3D Object Detection

用于3D目标检测的焦点稀疏卷积神经网络【CVPR2022】【3D检测】本文介绍一篇新的 3D 物体检测模型:Focals Conv,论文收录于 CVPR2022。在 3D 检测任务中,点云或体素数据不均匀地分布在3维空间中,不同位置的数据对物体检测的贡献是不…

地平线:面向规模化量产的自动驾驶感知研发与实践

导读 4月27日,地平线智能驾驶感知研发部负责人苏治中就 《面向规模化量产的自动驾驶感知研发与实践》 这一主题进行了直播讲解。 本次课程内容分为4个部分: 1、地平线自动驾驶环境感知量产实践 2、软硬协同的自动驾驶感知算法设计 3、实现规模化量产的“…

Power BI与Power Query、Power Pivot 是什么关系?

搞不清楚Power BI与Power Query、Power Pivot是什么关系?看这篇文章就够了。 刚开始学习PowerBI的时候,总是能碰到Power Query和Power Pivot这两个词(下文简称为PQ和PP),现在中文里面学习PowerBI的资源本来就不是很多&#xff0c…

地平线:上帝视角与想象力——自动驾驶感知的新范式

导读 3月28日,在「地平线自动驾驶技术专场」上,地平线自动驾驶系统架构师刘景初博士围绕《上帝视角与想象力——自动驾驶感知的新范式 》这一主题进行了直播讲解。 本次课程主要分为以下4个部分: 1、自动驾驶结构演化提出算法新需求 2、软件2…

详解Class类文件的结构(上)

前言 相信搞Java开发的同学都经常会接触到Class类文件,了解了JVM虚拟机之后也会大量接触到class字节码,那么它到底是什么样的文件?内部由什么构成?虚拟机又是如何去识别它的?这篇文章就来学习一下Class类文件的结构。…

Coursera自动驾驶课程第19讲:Mapping for Planning

在第18讲 《Coursera自动驾驶课程第18讲:The Planning Problem》 我们对自动驾驶中的规划问题有了一个全面的了解,理解了规划问题中的约束和目标;同时我们还讨论了如何分层如解决规划问题(任务规划、行为规划、路径规划和速度曲线…