一、随机划分
import numpy as np
from sklearn import datasetsiris = datasets.load_iris()
X = iris.data
y = iris.target# 1)归一化前,将原始数据分割
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.2,stratify=y, # 按照标签来分层采样shuffle=True, # 是否先打乱数据的顺序再划分random_state=1) # 控制将样本随机打乱
函数声明:train_test_split(test_size, train_size, random_state=None, shuffle=True, stratify=None)
参数说明:
test_size:可以接收float,int或者None。如果是float,则需要传入0.0-1.0之间的数,代表测试集占总样本数的比例。如果传入的是int,则代表测试集样本数,如果是None,即未声明test_size参数,则默认为train_size的补数。如果train_size也是None(即两者都是None),则默认是0.25。
train_size:和前者同理。
random_state:可以接收int,随机种子实例,或者None。random_state是随机数生成器使用的种子,如果是None则默认通过 ' np.random ' 来生成随机种子。
stratify:接收一个类数组对象 或 None。如果不为None,则数据将以分层的方式进行分割,使用这个作为分类标签。(找了半天关于分层的方式进行分割的具体说明,总算找到个像样的,见下文)
shuffle: 默认是True,是否在分割之前重新洗牌数据。如果shuffle = False那么stratify必须是None。
关于stratify参数的详细说明:
stratify是为了保持split前类的分布。比如有100个数据,80个属于A类,20个属于B类。如果train_test_split(… test_size=0.25, stratify = y_all), 那么split之后数据如下:
training: 75个数据,其中60个属于A类,15个属于B类。
testing: 25个数据,其中20个属于A类,5个属于B类。
用了stratify参数,training集和testing集的类的比例是 A:B= 4:1,等同于split前的比例(80:20)。通常在这种类分布不平衡的情况下会用到stratify。
将stratify=X_data(数据)就是按照X中的比例分配
将stratify=Y_data(标签)就是按照y中的比例分配
一般来说都是 stratify = y 的
二、K折交叉划分
传送门
定义与原理:将原始数据D随机分成K份,每次选择(K-1)份作为训练集,剩余的1份(红色部分)作为测试集。交叉验证重复K次,取K次准确率的平均值作为最终模型的评价指标。过程如下图所示,它可以有效避免过拟合和欠拟合状态的发生,K值的选择根据实际情况调节。
注意这两句是等价的。而使用参数average='macro'或者'weighted'是不等价的
print(precision_score(y_test, y_pred,average='micro'))
print(np.sum(y_test == y_pred) / len(y_test))
K-Fold是最简单的K折交叉,n-split就是K值,shuffle指是否对数据洗牌,random_state为随机种子
K值的选取会影响bias和viriance。K越大,每次投入的训练集的数据越多,模型的Bias越小。但是K越大,又意味着每一次选取的训练集之前的相关性越大,而这种大相关性会导致最终的test error具有更大的Variance。一般来说,根据经验我们一般选择k=5或10。
使用iris数据集进行简单实战:
import numpy as np
from sklearn import datasetsiris = datasets.load_iris()
X = iris.data
y = iris.targetfrom sklearn.model_selection import KFold
from sklearn.ensemble import GradientBoostingClassifier as GBDT
from sklearn.metrics import precision_scoreclf = GBDT(n_estimators=100)
precision_scores = []kf = KFold(n_splits=5, random_state=0, shuffle=False)
for train_index, valid_index in kf.split(X, y):x_train, x_valid = X[train_index], X[valid_index]y_train, y_valid = y[train_index], y[valid_index]clf.fit(x_train, y_train)y_pred = clf.predict(x_valid)precision_scores.append(precision_score(y_valid, y_pred, average='micro'))
print('Precision', np.mean(precision_scores))
进一步加深理解K折交叉验证:
注意:
1. for循环中参数如果是两个,则永远都是训练集和验证集的下标!!而不是x和y!!(即不是数据和标签!)
2. for trn_idx,val_idx in kf.split(X) :,这里可以只有X,没有y!因为如果只需要提取出下标来的话,则和数据标签没啥关系,我只是要分出训练集和验证集!
如果有X和y,则维度必须一致!!否则报错:比如下面这个例子:
输入:XX = np.array(['A','B','C','D','E','F','G','H','I','J'])
yy = np.array(range(15))
kf = KFold(n_splits=2, random_state=0, shuffle=False)for trn_idx,val_idx in kf.split(XX,yy) :# 如果带上y?但是维度不一致?print('验证集下标和验证集分别是:')print(val_idx)print(XX[val_idx])报错:
ValueError: Found input variables with inconsistent numbers of samples: [10, 15]
输入:XX = np.array(['A','B','C','D','E','F','G','H','I','J'])
kf = KFold(n_splits=3, random_state=0, shuffle=False)for trn_idx,val_idx in kf.split(XX) :print('验证集下标和验证集分别是:')print(val_idx)print(XX[val_idx])输出:验证集下标和验证集分别是:
[0 1 2 3]
['A' 'B' 'C' 'D']
验证集下标和验证集分别是:
[4 5 6]
['E' 'F' 'G']
验证集下标和验证集分别是:
[7 8 9]
['H' 'I' 'J']
输入:XX = np.array(['A','B','C','D','E','F','G','H','I','J'])
kf = KFold(n_splits=5, random_state=0, shuffle=False)for trn_idx,val_idx in kf.split(XX) :# 如果带上y?但是维度不一致?
# =============================================================================
# print('训练集下标和训练集分别是:')
# print(trn_idx)
# print(XX[trn_idx])
# =============================================================================print('验证集下标和验证集分别是:')print(val_idx)print(XX[val_idx])输出:
验证集下标和验证集分别是:
[0 1]
['A' 'B']
验证集下标和验证集分别是:
[2 3]
['C' 'D']
验证集下标和验证集分别是:
[4 5]
['E' 'F']
验证集下标和验证集分别是:
[6 7]
['G' 'H']
验证集下标和验证集分别是:
[8 9]
['I' 'J']
输入:from sklearn.model_selection import KFold
import numpy as np
x = np.array(['B', 'H', 'L', 'O', 'K', 'P', 'W', 'G'])
kf = KFold(n_splits=2)
d = kf.split(x)
for train_idx, test_idx in d:train_data = x[train_idx]test_data = x[test_idx]print('train_idx:{}, train_data:{}'.format(train_idx, train_data))print('test_idx:{}, test_data:{}'.format(test_idx, test_data))输出:train_idx:[4 5 6 7], train_data:['K' 'P' 'W' 'G']
test_idx:[0 1 2 3], test_data:['B' 'H' 'L' 'O']
train_idx:[0 1 2 3], train_data:['B' 'H' 'L' 'O']
test_idx:[4 5 6 7], test_data:['K' 'P' 'W' 'G']
为了更好的体现当前进行到的组数,可以进行如下更改:
输入:XX = np.array(['A','B','C','D','E','F','G','H','I','J'])
yy = np.arange(10)
kf = KFold(n_splits=2, random_state=0, shuffle=False)
for fold_, (trn_idx,val_idx) in enumerate(kf.split(XX,yy)) :print("fold n°{}".format(fold_+1))print('训练集下标和训练集分别是:')print(trn_idx)print(XX[trn_idx])print('验证集下标和验证集分别是:')print(val_idx)print(XX[val_idx])输出:
fold n°1
训练集下标和训练集分别是:
[5 6 7 8 9]
['F' 'G' 'H' 'I' 'J']
验证集下标和验证集分别是:
[0 1 2 3 4]
['A' 'B' 'C' 'D' 'E']
fold n°2
训练集下标和训练集分别是:
[0 1 2 3 4]
['A' 'B' 'C' 'D' 'E']
验证集下标和验证集分别是:
[5 6 7 8 9]
['F' 'G' 'H' 'I' 'J']
或者这样:
输入:XX = np.array(['A','B','C','D','E','F','G','H','I','J'])
yy = np.arange(10)
num = np.arange(10)
kf = KFold(n_splits=2, random_state=0, shuffle=False)
for fold_, (trn_idx,val_idx) in zip(num,kf.split(XX)) :print("fold n°{}".format(fold_+1))print('训练集下标和训练集分别是:')print(trn_idx)print(XX[trn_idx])print('验证集下标和验证集分别是:')print(val_idx)print(XX[val_idx])输出:fold n°1
训练集下标和训练集分别是:
[5 6 7 8 9]
['F' 'G' 'H' 'I' 'J']
验证集下标和验证集分别是:
[0 1 2 3 4]
['A' 'B' 'C' 'D' 'E']
fold n°2
训练集下标和训练集分别是:
[0 1 2 3 4]
['A' 'B' 'C' 'D' 'E']
验证集下标和验证集分别是:
[5 6 7 8 9]
['F' 'G' 'H' 'I' 'J']
三、StratifiedKFold
StratifiedShuffleSplit允许设置设置train/valid对中train和valid所占的比例
# coding = utf-8
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn import datasets
from sklearn.ensemble import GradientBoostingClassifier as GBDT
from sklearn.metrics import precision_scoreiris = datasets.load_iris()
X = iris.data
y = iris.targetx_train,x_test,y_train,y_test = train_test_split(X, y, test_size=0.2,stratify=y, # 按照标签来分层采样shuffle=True, # 是否先打乱数据的顺序再划分random_state=1) # 控制将样本随机打乱clf = GBDT(n_estimators=100)
precision_scores = []kf = StratifiedShuffleSplit(n_splits=10, train_size=0.6, test_size=0.4, random_state=0)
for train_index, valid_index in kf.split(x_train, y_train):x_train, x_valid = X[train_index], X[valid_index]y_train, y_valid = y[train_index], y[valid_index]clf.fit(x_train, y_train)y_pred = clf.predict(x_valid)precision_scores.append(precision_score(y_valid, y_pred, average='micro'))print('Precision', np.mean(precision_scores))
四、StratifiedShuffleSplit
StratifiedShuffleSplit允许设置设置train/valid对中train和valid所占的比例
# coding = utf-8
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn import datasets
from sklearn.ensemble import GradientBoostingClassifier as GBDT
from sklearn.metrics import precision_scoreiris = datasets.load_iris()
X = iris.data
y = iris.targetx_train,x_test,y_train,y_test = train_test_split(X, y, test_size=0.2,stratify=y, # 按照标签来分层采样shuffle=True, # 是否先打乱数据的顺序再划分random_state=1) # 控制将样本随机打乱clf = GBDT(n_estimators=100)
precision_scores = []kf = StratifiedShuffleSplit(n_splits=10, train_size=0.6, test_size=0.4, random_state=0)
for train_index, valid_index in kf.split(x_train, y_train):x_train, x_valid = X[train_index], X[valid_index]y_train, y_valid = y[train_index], y[valid_index]clf.fit(x_train, y_train)y_pred = clf.predict(x_valid)precision_scores.append(precision_score(y_valid, y_pred, average='micro'))print('Precision', np.mean(precision_scores))
其他的方法如RepeatedStratifiedKFold、GroupKFold等详见sklearn官方文档。
https://www.programcreek.com/python/example/91149/sklearn.model_selection.StratifiedShuffleSplit