【机器学习】 - 关于图像质量评价IQA(Image Quality Assessment)

图像质量评价(Image Quality Assessment,IQA)是图像处理中的基本技术之一,主要通过对图像进行特性分析研究,然后评估出图像优劣(图像失真程度)。

主要的目的是使用合适的评价指标,使得评价结果最符合人类主观评价。

从有没有人参与的角度区分,图像质量评价方法有主观评价和客观评价两个分支。

图像质量主观评价:

主观图像质量的评价方法是以人的主观意识为判断的评价方法,主观评价方法主要可分为两种:绝对评价和相对评价。

绝对评价: 评价指标是平均主观分(MOS),图像质量的绝对评价都是观察者参照原始图像对待定图像采用双刺激连续质量分级法。将待评价图像和原始图像按一定规则交替播放持续一定时间给观察者,然后在播放后留出一定的时间间隔供观察者打分,最后将所有给出的分数取平均作为该序列的评价值,即该待评图像的评价值,

国际上也对评价尺度做出了规定,对图像质量进行等级划分并用数字表示,也称为图像评价的5分制“全优度尺度”(优:5分,良:4分,中:3分,差:2分,劣:1分)

相对评价:评价指标是差异平均主观分(DMOS),相对评价中没有原始图像作为参考,是由观察者对一批待评价图像进行相互比较,从而判断出每个图像的优劣顺序,并给出相应的评价值。

通常,相对评价采用单刺激连续质量评价方法,将一批待评价图像按照一定的序列播放,此时观察者在观看图像的同时给出待评图像相应的评价分值。相对于主观绝对评价,主观相对评价也规定了相应的评分制度,称为“群优度尺度”。也是5分制。

主观评价方法需要大量的专业人士,耗时费力,而且不适应于实际应用。

 

图像质量客观评价:

    客观质量评价方法是指脱离人的主观意识判断,主要通过函数拟合或者机器学习的方法来建立一个模型,对待评图像进行相关的处理运算,得到图像的评价值。

优秀的图像质量算法应该具有三个特点:与人眼感知相符;具有通用性;结果具有单调性,稳定性。

图像质量客观评价可分为全参考(Full-Reference,FR),部分参考(Reduced-Reference,RR)和无参考(No-Reference,NR)三种类型。

全参考: 比较适合作为评价指标,全参考图像质量评价是指在选择理想图像作为参考图像的情况下,比较待评图像与参考图像之间的差异,分析待评图像的失真程度,从而得到待评图像的质量评估。

基于图像像素统计基础的有: 峰值信噪比(Peak-Signal to Noise Ratio,PSNR)和均方误差(Mean Square Error,MSE)。PSNR与MSE都是通过计算待评图像与参考图像之间像素误差的全局大小来衡量图像质量好坏的。PSNR值越大,表明待评图像与参考图像之间的失真较小,图像质量较好。而MSE的值越小,表明图像质量越好。这类算法比较简单且容易实现,但与主观评价方法有很大的差异。

   基于信息论中信息熵基础,有人提出来了信息保真度准则(Information Fidelity Criterion,IFC)和视觉信息保真度(Visual Information Fidelity,VIF)两种算法。通过计算待评图像与参考图像之间的互信息来衡量待评图像的质量优劣。但这类方法对于图像的结构信息没有反应。

  基于结构信息基础:提出了一种符合人眼视觉系统特性的图像质量客观评判标准-结构相似度(Structure Similaruty,SSIM)。SSIM值越大,失真图像质量越好。该指标算法实现简单,质量评估性比较可靠。 平均结构相似度算法(MSSIM),基于SSIM改进的一种算法,把原始图像和失真图像分成相同的小块,分别求SSIM,然后再求出整幅图的相似度。MSSIM值越大,失真图像质量越好。

   还有基于人类视觉系统(HSV)的图像质量评价方法,这种方法提高了客观质量评价方法与主观评价方法的一致性。

部分参考:以理想图像的部分特征信息作为参考,对待评图像进行比较分析,从而得到图像质量评价结果。部分参考方法可分为基于原始图像特征方法、基于数字水印方法和基于Wavelet域统计模型的方法等。部分图像参考的重点和难点在于寻找合适的特征信息。

无参考:无参考方法也称为盲图像质量评价(BIQA),无参考图像评价方法实现比较复杂,但因为一般的理想图像很难获得,所以这类方法偏重于实际应用。    比较简单的评价算法有:

均值:均值是指图像像素的平均值,它反映了图像的平均亮度,平均亮度越大,图像质量越好。

标准差:标准差是指图像像素灰度值相对于均值的离散程度。如果标准差越大,表明图像中灰度级分别越分散,图像质量也就越好,

平均梯度:平均梯度能反映图像中细节反差和纹理变换,它在一定程度上反映了图像的清晰程度。

熵:熵是指图像的平均信息量,它从信息论的角度衡量图像中信息的多少,图像中的信息熵越大,说明图像包含的信息越多。

研究点:

针对特定失真时,现阶段有很多质量评价算法的结果和主观评价值相差不大,但对其他类型的失真则可能结果并不理想。

除了设计质量评价算法外,还有一个方法是设计机器学习模型。基于机器学习方法主要是通过从已知质量的图像中提取出能够反映图像质量的特征参数,并进行训练学习,建立一个分析模型,然后把待评测图像的相应的特征参数输入到分析模型中,预测失真图像的质量。这种方法的评测结果一般优于函数拟合预测出来的结果,但是机器学习有学习过程,会花费大量时间。

现今的图像质量评价的重点研究主要是针对无参考图像的研究,分为3类:

面向特定失真图像质量评价方法、非特定失真图像质量评价和基于机器学习图像质量评价方法。

特定失真:

失真类型:图像模糊、图像噪声、JPEG压缩、JPEG2000压缩和块效应等。

图像模糊: 基于边缘信息差异的:根据检测到的不同边缘强度信息进行计算模糊度的图像质量评价算法(A no-reference perceptual blur metric based on complex edge analysis[C]),基于可察觉模糊和HVS计算图像模糊度的图像质量评价算法(Human visual system based on-reference objective image sharpness metric[C] )。基于Sobel算子计算图像的平均边缘宽度(A no-reference perceptual blur metric[C] )。

基于像素统计信息的:基于图像相邻像素域的灰度信息变化来计算图像模糊度的图像质量平均算法(The blur effect: perception and estimation with a new no-reference perceptual blur metric[C] )。基于图像相邻灰度的差异方差的变化大小来计算模糊度的图像质量评价算法(Efficient method of detecting globally blurry or sharp images[C] )。

基于变化域的:基于8*8大小的离散余弦变换来估计图像模糊度的图像质量评价算法(Blur determination in the compressed domain using DCT information[C])。

噪声失真:根据不同分辨率的方差差异计算出图像的噪声方差的图像质量评价算法(A fast parallel algorithm for blind estimation of noise variance[J])。根据Sobel算子计算图像结构的边缘阈值(A fast method for image noise estimation using laplacian operator and adaptive edge detection[C] )。

JPEG失真: 基于块边界的统计图像质量评价算法(Using edge direction information for measuring blocking artifacts of images[J])。

基于非特定失真图像的质量评价:

盲图像质量指标(BIQI)(A two-step framework for constructing blind image quality indices[J]):分为两步,先将各种图像进行失真的分类,然后评估失真图像的质量。

自然图像质量评价方法(NIQE)(No-reference image blur assessment using multiscale gradient[J]):采用96*96块间无重合的方式对图像对比度归一化进行分块。计算每个块的局部对比度的均值。

基于失真辨识的图像真实性和完整性评价算法(DIIVINE)(Blind image quality assessment: From natural scene statistics to perceptual quality[J] ):首先对失真图像使用金字塔小波变换,然后对这些参数进一步统计特性。

 

基于机器学习方法的:

利用卷积神经网络的模型对图像质量进行评价(Convolutional neural networks for no-reference image quality assessment[C])。

利用广义回归神经网络(GRNN)的模型对图像的质量进行评价(Blind image quality assessment using a general regression neural network[J])。

 

图像质量评价算法评价指标和常用数据库:

算法的评价效果是否较好,需要一个统一的标准来衡量。

几个比较常用的数学评价指标:

斯皮尔曼等级相关系数(SPOCC)

线形皮尔森相关系数(LPCC)

KL散度/KL距离/相对熵(KLD)

离出率(OR)

离群值距离(OD)

常用图像质量评价数据库:
之前的研究者通过主观评价方法评价很多图像,并给出了它们的主观平均值,一起组成一个公开的图像质量评价数据库。典型的有:LIVE2, CSIQ和TID2013.

LIVE2图像质量评价数据库是美国德州大学奥斯丁分校图像与视频工程实验室开发的。

CSIQ图像质量评价数据库是美国俄克拉荷马州立大学开发的。

TID2013图像质量评价数据库是乌克兰航空航天大学开发的。

 

文章参考:https://www.cnblogs.com/libai123456/p/9622484.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/439405.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【机器学习】 - CNN

什么是卷积神经网络,它为何重要? 卷积神经网络(也称作 ConvNets 或 CNN)是神经网络的一种,它在图像识别和分类等领域已被证明非常有效。 卷积神经网络除了为机器人和自动驾驶汽车的视觉助力之外,还可以成功…

Asp.Net中WebForm与MVC,Web API模式对比

webform,web mvc和web api都是asp.net官方的三套框架,想对比下三者的关系,查了下资料,web api跟web mvc基本同属一脉,只是mvc多了一个视图渲染,网上有些博客介绍了webform和mvc底层源码实现的不同&#xff…

【机器学习】 - Keras学习 - TensorBoard模块 - 可视化模型训练过程神器

运行环境:Win10 anaconda3。 TensorFlow版本:2.0.0 import numpy as np import tensorflow as tf import tensorflow.keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense import matplotlib.pyplot as…

无废话SharePoint入门教程一[SharePoint概述]

一、前言 听说SharePoint也有一段时间了,可一直处在门外。最近被调到SharePoint实施项目小组,就随着工作一起学习了一下实施与开发。但苦于网上SharePoint入门的东西实在太少,导致自学入门很难,不知道SharePoint这东西到底能做什么…

SharePoint 站点结构及概念

简单的记录一下Sharepoint的结构与基本概念 一、服务器场 服务器场,即主机的集群.简单点说就是两台机器互相备份,两个或几台机器之间有心跳线,定时检测对端设备的情况,如果对端设备出现故障,一台机器就会接管出问题机器的受保护…

【Python学习】 - sklearn学习 - 自带数据集sklearn.datasets.x

sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_可在线下载的数据集(Downloaded Dataset):sklearn.datasets.fetch_计算机生成的数据集(Generated Datas…

sharepoint 概念及认证方式介绍

3.SharePoint Web 应用程序 我个人的理解,SharePoint Web 应用程序(SharePoint Web Application)代表的是 SharePoint 网站(集)的物理容器。 SharePoint Web 应用程序需要指定内容数据库、宿主 IIS 应用程序池、应用…

我们可以用SharePoint做什么

前言 不知不觉作为一个SharePoint的开发人员若干年了,从SharePoint api 开始学习,到了解SharePoint的结构,逐渐一点点了解sharepoint的体系;从SharePoint 的2007到2010到2013到SharePoint Online都接触了一些。本文会从个人的视角…

SharePoint REST API - 确定REST端点URL

SharePoint REST端点URI的结构 在你能够通过REST访问SharePoint资源之前,首先你要做的就是找出对应的URI端点,如果你对Client API熟悉,有些时候也可以参考Client API去猜测构建,例如。 客户端对象模型的方法: List.G…

【机器学习】 - 各种人脸数据集下载地址及说明汇总

1. Olivetti Faces人脸数据集 由40个人组成,共计400张人脸; 每人的人脸图片为10张,包含正脸、侧脸以及不同的表情; 整个数据集就是一张大的人脸组合图片,下载地址:https://cs.nyu.edu/~roweis/data/olivet…

【机器学习】 - 激活函数与交叉熵Sigmoid, Softmax, binary_crossentropy, categorican_crossentropy区别

Content: 为什么需要激活函数;一个神经元在做什么;激活函数 SigmoidSoftmax 4. 交叉熵损失函数 Binary cross-entropyCategorican cross-entropy为什么需要激活函数: Ans: 为了引入非线性变换。 如下图所示的红线和蓝线,在这个…

SharePoint 2013 Farm 安装指南——Least Privilege

写过很多关于SharePoint 2013 安装,这是第四篇。可能你会觉得为什么如此简单的安装至于花那么多精力去折腾吗。我的答案是肯定的。知识的积累不是一蹴而就的,而是循序渐进的去学习,每一个阶段都有独立的思考,于是乎第四篇SharePoi…

【机器学习】 - 关于Keras的深入理解

1.keras中使用相同的loss与metrics,都指定为mse,为什么训练时每轮完成后它们数值不一样? 答: 此时的loss是指完成最后一个batch后得到的这轮epoch的loss的加权平均,权重就是每个batch的样本数,&#xff08…

SharePoint 2007 and 2010 的服务器场的端口

由于要把一台SharePoint Server放到外网去,就把IP改到DMZ区了,结果除了系统管理员,其他帐号都无法验证通过,肯定是一些端口没开. 网上一查,SharePoint所需要的端口还真多,不过Client和WFE之间的应该开放80和443就OK了,其余的都是SharePoint Server之间,或者和 公司网络环境的…

【Python学习】 - 使用Anaconda的Spyder查看某些函数的原型的6种方法汇总

1.Ctrl鼠标点击函数名(对应的函数名会加下划线) 或 Ctrlg 2.help(function) 在某些情况下方法1失效,比如TensorFlow中的一些函数tf.constant,他只会跳转到一个init文件,并不会展示函数原型。 所以可以这样help(tf.co…

关于报错:'nvidia-smi' 不是内部或外部命令,也不是可运行的程序 或批处理文件。

使用cmd查看电脑显卡的信息,调用nvidia-smi查看显卡使用情况报错如下: 因为它找不到该命令。这个文件是一个exe文件,一般都在下面这个文件夹中。 C:\Program Files\NVIDIA Corporation\NVSMI 所以想要使用该命令必须要能得到这个文件夹&…

SharePoint网站集备份与恢复

下面是操作过程&#xff1a;尝试三是成功的 尝试一&#xff1a;移动网站集&#xff08;无效&#xff09; 向Web应用程序新增了一个数据库&#xff0c;把网站集迁移到新数据库里&#xff1b; Get-SPSite -ContentDatabase <SourceContentDb> | Move-SPSite -Destination…

【机器学习】 - 使用dlib进行人脸定位,人脸检测,给人脸图片戴口罩

detector dlib.get_frontal_face_detector() 功能&#xff1a;人脸检测画框 参数&#xff1a;无 返回值&#xff1a;默认的人脸检测器 faces detector(img_gray, 0) 功能&#xff1a;对图像画人脸框 参数&#xff1a;img_gray&#xff1a;输入的图片 返回值&#xff1a;人脸…

【机器学习】 - import cv2 opencv安装python

果然不出我所料&#xff0c;直接pip就出了很多奇奇怪怪的错误&#xff0c;还是用清华镜像吧 输入&#xff1a;pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple 安装完后&#xff0c;重启spyder即可使用。 下载方法2&#xff1a; 下载地址&#xff1a…

Sharepoin学习笔记—架构系列—Sharepoint服务(Services)与服务应用程序框架(Service Application Framework) 2

上一篇我们以问答的方式明确了Sharepoint服务的一些概念&#xff0c;这里我们重点来看两个方面:Sharepoint服务器构架对象模型以及Sharepoint 服务应用程序的某些拓扑结构 一、Sharepoint服务器构架对象模型 二、Sharepoint 服务应用程序的某些拓扑结构 Sharepoint 服务应用程…