opencv直方图与模板匹配

import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB
%matplotlib inline 
def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()

直方图

cv2.calcHist(images,channels,mask,histSize,ranges)

  • images: 原图像图像格式为 uint8 或 float32。当传入函数时应 用中括号 [] 括来例如[img]
  • channels: 同样用中括号括来它会告函数我们统幅图 像的直方图。如果入图像是灰度图它的值就是 [0]如果是彩色图像 的传入的参数可以是 [0][1][2] 它们分别对应着 BGR。
  • mask: 掩模图像。统整幅图像的直方图就把它为 None。但是如 果你想统图像某一分的直方图的你就制作一个掩模图像并 使用它。
  • histSize:BIN 的数目。也应用中括号括来
  • ranges: 像素值范围常为 [0256]
img = cv2.imread('cat.jpg',0) #0表示灰度图
hist = cv2.calcHist([img],[0],None,[256],[0,256])
hist.shape
plt.hist(img.ravel(),256); 
plt.show()

img = cv2.imread('cat.jpg') 
color = ('b','g','r')
for i,col in enumerate(color): histr = cv2.calcHist([img],[i],None,[256],[0,256]) plt.plot(histr,color = col) plt.xlim([0,256]) 

 

 mask操作

# 创建mast
mask = np.zeros(img.shape[:2], np.uint8)
print (mask.shape)
mask[100:300, 100:400] = 255
cv_show(mask,'mask')
img = cv2.imread('cat.jpg', 0)
cv_show(img,'img')
masked_img = cv2.bitwise_and(img, img, mask=mask)#与操作
cv_show(masked_img,'masked_img')
hist_full = cv2.calcHist([img], [0], None, [256], [0, 256])
hist_mask = cv2.calcHist([img], [0], mask, [256], [0, 256])
plt.subplot(221), plt.imshow(img, 'gray')
plt.subplot(222), plt.imshow(mask, 'gray')
plt.subplot(223), plt.imshow(masked_img, 'gray')
plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)
plt.xlim([0, 256])
plt.show()

直方图均衡化 

 

 

img = cv2.imread('clahe.jpg',0) #0表示灰度图 #clahe
plt.hist(img.ravel(),256); 
plt.show()

 

equ = cv2.equalizeHist(img) 
plt.hist(equ.ravel(),256)
plt.show()

 

res = np.hstack((img,equ))
cv_show(res,'res')

自适应直方图均衡化

clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) 
res_clahe = clahe.apply(img)
res = np.hstack((img,equ,res_clahe))
cv_show(res,'res')

模板匹配

模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1)

# 模板匹配
img = cv2.imread('lena.jpg', 0)
template = cv2.imread('face.jpg', 0)
h, w = template.shape[:2] 
img.shape
template.shape
  • TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
  • TM_CCORR:计算相关性,计算出来的值越大,越相关
  • TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
  • TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
  • TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
  • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关
    methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR','cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
    res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
    res.shape
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
    min_val
    max_val
    min_loc
    max_loc
    for meth in methods:img2 = img.copy()# 匹配方法的真值method = eval(meth)print (method)res = cv2.matchTemplate(img, template, method)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)# 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:top_left = min_locelse:top_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)# 画矩形cv2.rectangle(img2, top_left, bottom_right, 255, 2)plt.subplot(121), plt.imshow(res, cmap='gray')plt.xticks([]), plt.yticks([])  # 隐藏坐标轴plt.subplot(122), plt.imshow(img2, cmap='gray')plt.xticks([]), plt.yticks([])plt.suptitle(meth)plt.show()

     

     

    匹配多个对象

    img_rgb = cv2.imread('mario.jpg')
    img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
    template = cv2.imread('mario_coin.jpg', 0)
    h, w = template.shape[:2]res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
    threshold = 0.8
    # 取匹配程度大于%80的坐标
    loc = np.where(res >= threshold)
    for pt in zip(*loc[::-1]):  # *号表示可选参数bottom_right = (pt[0] + w, pt[1] + h)cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)cv2.imshow('img_rgb', img_rgb)
    cv2.waitKey(0)

     

     

     

     

     

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43158.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring中Bean的生命周期以及Bean的单例与多例模式

一. Bean的生命周期 bean的生命周期可以表达为:bean的定义➡bean的初始化➡bean的使用➡bean的销毁 Bean的初始化过程 1)通过XML、Java annotation(注解)以及Java Configuration(配置类) 等方式加载Bea…

2023+HuggingGPT: Solving AI Tasks with ChatGPT and itsFriends in Hugging Face

摘要: 语言是llm(例如ChatGPT)连接众多AI模型(例如hugs Face)的接口,用于解决复杂的AI任务。在这个概念中,llms作为一个控制器,管理和组织专家模型的合作。LLM首先根据用户请求规划任务列表,然后为每个任务分配专家模…

Unity 鼠标实现对物体的移动、缩放、旋转

文章目录 1. 代码2. 测试场景 1. 代码 using UnityEngine;public class ObjectManipulation : MonoBehaviour {// 缩放比例限制public float MinScale 0.2f;public float MaxScale 3.0f;// 缩放速率private float scaleRate 1f;// 新尺寸private float newScale;// 射线pri…

【Windows系统编程】03.远线程注入ShellCode

shellcode&#xff1a;本质上也是一段普通的代码&#xff0c;只不过特殊的编程手法&#xff0c;可以在任意环境下&#xff0c;不依赖于原有的依赖库执行。 远程线程 #include <iostream> #include <windows.h> #include <TlHelp32.h>int main(){HANDLE hPr…

Educational Codeforces Round 153 (Rated for Div. 2)ABC

Educational Codeforces Round 153 (Rated for Div. 2) 目录 A. Not a Substring题目大意思路核心代码 B. Fancy Coins题目大意思想核心代码 C. Game on Permutation题目大意思想核心代码 A. Not a Substring 题目大意 给定一个只包含“&#xff08;”和“&#xff09;”这两…

react-native-webview RN和html双向通信

rn登录后得到的token需要传递给网页&#xff0c;js获取到的浏览器信息需要传递给rn RN Index.js: import React from react import { WebView } from react-native-webview import useList from ./useListexport default function Index(props) {const { uri, jsCode, webVie…

iPhone删除的照片能恢复吗?不小心误删了照片怎么找回?

iPhone最近删除清空了照片还能恢复吗&#xff1f;大家都知道&#xff0c;照片对于我们来说是承载着美好回忆的一种形式。它记录着我们的平淡生活&#xff0c;也留住了我们的美好瞬间&#xff0c;具有极其重要的纪念价值。 照片不小心误删是一件非常难受的事&#xff0c;那么iP…

Centos7 配置Docker镜像加速器

docker实战(一):centos7 yum安装docker docker实战(二):基础命令篇 docker实战(三):docker网络模式(超详细) docker实战(四):docker架构原理 docker实战(五):docker镜像及仓库配置 docker实战(六):docker 网络及数据卷设置 docker实战(七):docker 性质及版本选择 认知升…

CentOS系统环境搭建(五)——Centos7安装maven

centos系统环境搭建专栏&#x1f517;点击跳转 Centos7安装maven 下载压缩包 maven下载官网 解压 压缩包放置到/usr/local tar -xvf apache-maven-3.9.2-bin.tar.gz配置环境变量 vim /etc/profile在最下面追加 MAVEN_HOME/usr/local/apache-maven-3.9.2 export PATH${MAV…

Jenkins 监控dist.zip文件内容发生变化 触发自动部署

为Jenkins添加plugin http://xx:xx/manage 创建一个任务 构建触发器 每3分钟扫描一次&#xff0c;发现指定文件build.zip文件的MD5发生变化后 触发任务

【C++学习手札】一文带你认识C++虚继承​​

食用指南&#xff1a;本文在有C基础的情况下食用更佳 &#x1f340;本文前置知识&#xff1a;C虚函数&#xff08;很重要&#xff0c;内部剖析&#xff09; ♈️今日夜电波&#xff1a;僕らのつづき—柊優花 1:06 ━━━━━━️&#x1f49f;──────── 3:51 …

创建密码库/创建用户帐户/更新 Ansible 库的密钥/ 配置cron作业

目录 创建密码库 创建用户帐户 更新 Ansible 库的密钥 配置cron作业 创建密码库 按照下方所述&#xff0c;创建一个 Ansible 库来存储用户密码&#xff1a; 库名称为 /home/curtis/ansible/locker.yml 库中含有两个变量&#xff0c;名称如下&#xff1a; pw_developer&#…

File inclusion

文章目录 File inclusion(local)File inclusion(remote) File inclusion(local) 随便选择一个点击提交&#xff0c;提交后观察 url ?filename 我们可以使用相对路径../../../../../访问我们想要看到的文件内容 查看windows系统的主机映射文件../../../../Windows/System32/…

ShardingSphere 可观测 SQL 指标监控

ShardingSphere并不负责如何采集、存储以及展示应用性能监控的相关数据&#xff0c;而是将SQL解析与SQL执行这两块数据分片的最核心的相关信息发送至应用性能监控系统&#xff0c;并交由其处理。 换句话说&#xff0c;ShardingSphere仅负责产生具有价值的数据&#xff0c;并通过…

【C++】AVL树(平衡二叉树)

目录 一、AVL树的定义二、AVL树的作用三、AVL树的插入操作插入——平衡因子的更新插入——左单旋插入——右单旋插入——左右双旋插入——右左双旋 四、ALVL树的验证五、AVL树的性能 一、AVL树的定义 AVL树&#xff0c;全称 平衡二叉搜索&#xff08;排序&#xff09;树。 二…

HCIP的交换机实验

题目 拓扑图 PC1/3接口用access 创建WLAN LSW1 创建WLAN [lsw1]vlan batch 2 to 6[lsw1-Ethernet0/0/1]p [lsw1-Ethernet0/0/1]port l [lsw1-Ethernet0/0/1]port link- [lsw1-Ethernet0/0/1]port link-flap [lsw1-Ethernet0/0/1]port link-type acc [lsw1-Ethernet0/0…

Bigemap Pro国产基础软件介绍——一款多源数据处理软件

一、软件简介 Bigemap Pro是由成都比格图数据处理有限公司(下称”BIGEMAP”)开发和发行的国产大数据处理基础软件。Bigemap Pro是在BIGEMAP GIS Office基础上&#xff0c;经过十年的用户积累与反馈和技术更新迭代出的新一代基础软件产品。Bigemap Pro国产基础软件集成了数据采…

【Diffusion】李宏毅2023机器学习Diffusion笔记

文章目录 1 想法概述2 实际过程阶段1 Add Noise阶段2 Denoise 3 数学原理4 为什么推理时要额外加入noise5 一些不知道对不对的Summary 1 想法概述 从一张充满噪声的图中不断denoise&#xff0c;最终得到一张clear的图片。为了确定当前图片中噪声占比的大小&#xff0c;同时输入…

LVS负载均衡之--Keepalived模式(超详细)

一.Keepalived概述 Keepalived起初是专门针对LVS设计的一款强大的辅助工具&#xff0c;主要用来提供故障切换和健康检查功能-----判断LVS负载调度器&#xff0c;节点服务器的可用性&#xff0c;及时隔离并替换为新的服务器&#xff0c;当故障主机恢复后将其重新加入群集中Keep…

【数据结构】二叉树

&#x1f407; &#x1f525;博客主页&#xff1a; 云曦 &#x1f4cb;系列专栏&#xff1a;数据结构 &#x1f4a8;吾生也有涯&#xff0c;而知也无涯 &#x1f49b; 感谢大家&#x1f44d;点赞 &#x1f60b;关注&#x1f4dd;评论 文章目录 前言一、树的概念及结构&#x…