2023+HuggingGPT: Solving AI Tasks with ChatGPT and itsFriends in Hugging Face

摘要:

语言是llm(例如ChatGPT)连接众多AI模型(例如hugs Face)的接口,用于解决复杂的AI任务。在这个概念中,llms作为一个控制器,管理和组织专家模型的合作。LLM首先根据用户请求规划任务列表,然后为每个任务分配专家模型。专家执行任务后,LLM收集结果并响应用户。

问题:

1.尽管LLMs在NLP任务中取得了重大成就,但由于文本输入和输出形式的限制,目前的LLMs缺乏处理复杂信息(如视觉和语音)的能力。

2.在现实场景中,一些复杂的任务通常由多个子任务组成,因此需要多个模型的调度和协作,这也超出了语言模型的能力。

3.对于一些具有挑战性的任务,LLMs在零射击或少射击设置中表现出出色的结果,但他们仍然比一些专家(例如,微调模型)弱。

贡献点:

1. 为了补充大型语言模型和专家模型的优势,提出了HuggingGPT。HuggingGPT将llm作为规划和决策的大脑,针对每个特定任务自动调用和执行专家模型,为通用AI解决方案的设计提供了新的途径。

2. 通过将Hugging Face与ChatGPT周围的许多任务特定模型集成,HuggingGPT能够处理涵盖多种模式和领域的广义人工智能任务。HuggingGPT通过模型间的开放协作,为用户提供多模式、可靠的服务。

3. 指出了HuggingGPT(和自治代理)中任务规划的重要性,并制定了一些实验评估来衡量llm的规划能力。

4.在跨语言、视觉、语音和跨模态的多个具有挑战性的人工智能任务上进行的大量实验表明,HuggingGPT在理解和解决来自多个模态和领域的复杂任务方面具有巨大的潜力。

方法:

整体流程

1.任务规划:使用ChatGPT分析用户的请求,了解用户的意图,并通过提示将其分解为可能可解决的任务。

通常,在实际场景中,许多用户请求将包含一些复杂的意图,因此需要编排多个子任务来实现目标。因此,我们制定任务规划作为HuggingGPT的第一阶段,目的是利用LLM分析用户请求,然后将其分解为结构化任务的集合。此外,我们还需要LLM来确定依赖关系以及这些分解任务的执行顺序,以建立它们之间的联系。

2.模型选择:为了解决计划的任务,ChatGPT根据模型描述选择托管在hug Face上的专家模型。

完成任务规划后,HuggingGPT接下来需要将任务和模型进行匹配,即在解析的任务列表中为每个任务选择最合适的模型。为此,我们使用模型描述作为连接各个模型的语言接口。更具体地说,我们首先从机器学习社区(例如,hug Face)获得专家模型的描述,然后通过上下文任务模型分配机制动态选择任务模型。该策略支持增量模型访问(简单地提供专家模型的描述),并且可以更加开放和灵活地使用ML社区。

上下文任务模型分配我们将任务模型分配表述为一个单选问题,其中潜在的模型在给定的上下文中作为选项呈现。通常,HuggingGPT能够根据提示符中提供的用户查询和任务信息,为每个已解析的任务选择最合适的模型。然而,由于最大上下文长度的限制,提示符不可能包含所有相关的模型信息。为了解决这个问题,我们首先根据它们的任务类型过滤掉模型,只保留那些与当前任务类型匹配的模型。对于这些选定的模型,我们将根据它们在hug Face上的下载次数对它们进行排名(我们认为下载可以在一定程度上反映模型的质量),然后选择top-K的模型作为HuggingGPT的候选模型。此策略可以大大减少提示中的令牌使用,并有效地为每个任务选择适当的模型。

3.任务执行:调用并执行每个选定的模型,并将结果返回给ChatGPT。

一旦将特定的模型分配给已解析的任务,下一步就是执行该任务,即执行模型推理。因此,在这个阶段,HuggingGPT会自动将这些任务参数输入到模型中,执行这些模型来获得推理结果,然后将其发送回LLM。在这个阶段有必要强调资源依赖的问题。由于先决条件任务的输出是动态生成的,因此HuggingGPT还需要在启动任务之前动态地指定任务的依赖资源。

4.响应生成:最后,利用ChatGPT整合所有模型的预测并为用户生成响应。

在所有任务执行完成后,HuggingGPT需要生成最终响应。HuggingGPT将前三个阶段(任务规划、模型选择和任务执行)的所有信息集成为这一阶段的简明总结,包括计划任务列表、任务选择的模型以及模型的推断结果。其中最重要的是推理结果,这是HuggingGPT做出最终决策的关键点。这些推理结果以结构化的格式呈现,如对象检测模型中带有检测概率的边界框,问答模型中的答案分布等。HuggingGPT允许LLM接收这些结构化的推理结果作为输入,并以友好的人类语言形式生成响应。此外,LLM不是简单地聚合结果,而是生成主动响应用户请求的响应,从而提供具有置信度的可靠决策。

整体流程如下图所示:语言是llm(例如ChatGPT)连接众多AI模型(例如hugs Face)的接口,用于解决复杂的AI任务。在这个概念中,LLM作为一个控制器,管理和组织专家模型的合作。LLM首先根据用户请求规划任务列表,然后为每个任务分配专家模型。专家执行任务后,LLM收集结果并响应用户。

一个huggingGPT的例子,如下图所示。HuggingGPT的工作流程以LLM(如ChatGPT)为核心控制器,专家模型为执行者,分为四个阶段:1)任务规划:LLM将用户请求解析为任务列表,确定任务之间的执行顺序和资源依赖关系;2)模型选择:基于专家模型在hug Face上的描述,LLM为任务分配合适的模型;3)任务执行:混合端点上的专家模型执行分配的任务;4)响应生成:LLM集成专家的推理结果,生成工作流日志汇总,响应用户。

局限性:

(1)HuggingGPT中的规划严重依赖于LLM的能力。因此,我们不能保证生成的计划总是可行和最优的。因此,如何对LLM进行优化,提高LLM的规划能力至关重要;

(2) 在我们的框架中,效率是一个共同的挑战。为了构建这样一个具有任务自动化的协作系统(例如HuggingGPT),它严重依赖于一个强大的控制器(例如ChatGPT)。然而,HuggingGPT在整个工作流程中需要与llm进行多次交互,从而增加了生成响应的时间成本;

(3)令牌长度是使用LLM时的另一个常见问题,因为最大令牌长度总是有限的。虽然有些作品已经将最大长度扩展到32K,但如果我们想要连接众多的模型,这对我们来说仍然是无法满足的。因此,如何简单有效地总结模型描述也是值得探索的问题;

(4)不稳定性的主要原因是llm通常是不可控的。虽然LLM在生成方面很熟练,但在预测过程中仍有可能不符合指令或给出不正确的答案,导致程序工作流程出现异常。如何减少推理过程中的不确定性是设计系统时必须考虑的问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43156.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity 鼠标实现对物体的移动、缩放、旋转

文章目录 1. 代码2. 测试场景 1. 代码 using UnityEngine;public class ObjectManipulation : MonoBehaviour {// 缩放比例限制public float MinScale 0.2f;public float MaxScale 3.0f;// 缩放速率private float scaleRate 1f;// 新尺寸private float newScale;// 射线pri…

【Windows系统编程】03.远线程注入ShellCode

shellcode&#xff1a;本质上也是一段普通的代码&#xff0c;只不过特殊的编程手法&#xff0c;可以在任意环境下&#xff0c;不依赖于原有的依赖库执行。 远程线程 #include <iostream> #include <windows.h> #include <TlHelp32.h>int main(){HANDLE hPr…

Educational Codeforces Round 153 (Rated for Div. 2)ABC

Educational Codeforces Round 153 (Rated for Div. 2) 目录 A. Not a Substring题目大意思路核心代码 B. Fancy Coins题目大意思想核心代码 C. Game on Permutation题目大意思想核心代码 A. Not a Substring 题目大意 给定一个只包含“&#xff08;”和“&#xff09;”这两…

react-native-webview RN和html双向通信

rn登录后得到的token需要传递给网页&#xff0c;js获取到的浏览器信息需要传递给rn RN Index.js: import React from react import { WebView } from react-native-webview import useList from ./useListexport default function Index(props) {const { uri, jsCode, webVie…

iPhone删除的照片能恢复吗?不小心误删了照片怎么找回?

iPhone最近删除清空了照片还能恢复吗&#xff1f;大家都知道&#xff0c;照片对于我们来说是承载着美好回忆的一种形式。它记录着我们的平淡生活&#xff0c;也留住了我们的美好瞬间&#xff0c;具有极其重要的纪念价值。 照片不小心误删是一件非常难受的事&#xff0c;那么iP…

android TextView 超出长度使用省略号

在Android中最常见的需求&#xff0c;就是在在外部展示信息时&#xff0c;需要简要展示内容。TextView仅需在静态布局文件中设置以下几个属性&#xff1a; android:maxWidth“100dp” // 宽度是多少才算超出 android:maxLines"2" // 高度多少才算超出 android:elli…

React下载文件的两种方式

React下载文件的两种方式 - 代码先锋网 不知道有用没用看着挺整齐 没试过 1、GET类型下载 download url > {const eleLink document.createElement(a);eleLink.style.display none;// eleLink.target "_blank"eleLink.href url;// eleLink.href record;d…

Centos7 配置Docker镜像加速器

docker实战(一):centos7 yum安装docker docker实战(二):基础命令篇 docker实战(三):docker网络模式(超详细) docker实战(四):docker架构原理 docker实战(五):docker镜像及仓库配置 docker实战(六):docker 网络及数据卷设置 docker实战(七):docker 性质及版本选择 认知升…

CentOS系统环境搭建(五)——Centos7安装maven

centos系统环境搭建专栏&#x1f517;点击跳转 Centos7安装maven 下载压缩包 maven下载官网 解压 压缩包放置到/usr/local tar -xvf apache-maven-3.9.2-bin.tar.gz配置环境变量 vim /etc/profile在最下面追加 MAVEN_HOME/usr/local/apache-maven-3.9.2 export PATH${MAV…

Jenkins 监控dist.zip文件内容发生变化 触发自动部署

为Jenkins添加plugin http://xx:xx/manage 创建一个任务 构建触发器 每3分钟扫描一次&#xff0c;发现指定文件build.zip文件的MD5发生变化后 触发任务

【C++学习手札】一文带你认识C++虚继承​​

食用指南&#xff1a;本文在有C基础的情况下食用更佳 &#x1f340;本文前置知识&#xff1a;C虚函数&#xff08;很重要&#xff0c;内部剖析&#xff09; ♈️今日夜电波&#xff1a;僕らのつづき—柊優花 1:06 ━━━━━━️&#x1f49f;──────── 3:51 …

创建密码库/创建用户帐户/更新 Ansible 库的密钥/ 配置cron作业

目录 创建密码库 创建用户帐户 更新 Ansible 库的密钥 配置cron作业 创建密码库 按照下方所述&#xff0c;创建一个 Ansible 库来存储用户密码&#xff1a; 库名称为 /home/curtis/ansible/locker.yml 库中含有两个变量&#xff0c;名称如下&#xff1a; pw_developer&#…

神经网络基础-神经网络补充概念-39-梯度消失与梯度爆炸

简介 梯度消失和梯度爆炸是在深度神经网络中训练过程中可能出现的问题&#xff0c;导致模型难以训练或无法收敛。这些问题与反向传播算法中的梯度计算有关。 概念 梯度消失&#xff08;Gradient Vanishing&#xff09;&#xff1a;在深层神经网络中&#xff0c;特别是具有很…

File inclusion

文章目录 File inclusion(local)File inclusion(remote) File inclusion(local) 随便选择一个点击提交&#xff0c;提交后观察 url ?filename 我们可以使用相对路径../../../../../访问我们想要看到的文件内容 查看windows系统的主机映射文件../../../../Windows/System32/…

ShardingSphere 可观测 SQL 指标监控

ShardingSphere并不负责如何采集、存储以及展示应用性能监控的相关数据&#xff0c;而是将SQL解析与SQL执行这两块数据分片的最核心的相关信息发送至应用性能监控系统&#xff0c;并交由其处理。 换句话说&#xff0c;ShardingSphere仅负责产生具有价值的数据&#xff0c;并通过…

Go 语言中排序的 3 种方法

原文链接&#xff1a; Go 语言中排序的 3 种方法 在写代码过程中&#xff0c;排序是经常会遇到的需求&#xff0c;本文会介绍三种常用的方法。 废话不多说&#xff0c;下面正文开始。 使用标准库 根据场景直接使用标准库中的方法&#xff0c;比如&#xff1a; sort.Intsso…

【C++】AVL树(平衡二叉树)

目录 一、AVL树的定义二、AVL树的作用三、AVL树的插入操作插入——平衡因子的更新插入——左单旋插入——右单旋插入——左右双旋插入——右左双旋 四、ALVL树的验证五、AVL树的性能 一、AVL树的定义 AVL树&#xff0c;全称 平衡二叉搜索&#xff08;排序&#xff09;树。 二…

一次Linux图形化界面恢复

一次Linux 图形化界面恢复 一次Linux 图形化界面恢复出现问题场景问题排查 一次Linux 图形化界面恢复 出现问题场景 使用xmanager远程连接虚机的CentOS7系统图形界面出现已拒绝x11转移申请问题&#xff0c;在折腾X11过程中&#xff0c;安装与卸载的过程中不小心把xorg-x11-xa…

HCIP的交换机实验

题目 拓扑图 PC1/3接口用access 创建WLAN LSW1 创建WLAN [lsw1]vlan batch 2 to 6[lsw1-Ethernet0/0/1]p [lsw1-Ethernet0/0/1]port l [lsw1-Ethernet0/0/1]port link- [lsw1-Ethernet0/0/1]port link-flap [lsw1-Ethernet0/0/1]port link-type acc [lsw1-Ethernet0/0…

kubeasz在线安装K8S集群单master集群(kubeasz安装之二)

一、介绍 Kubeasz 是一个基于 Ansible 自动化工具&#xff0c;用于快速部署和管理 Kubernetes 集群的工具。它支持快速部署高可用的 Kubernetes 集群&#xff0c;支持容器化部署&#xff0c;可以方便地扩展集群规模&#xff0c;支持多租户&#xff0c;提供了强大的监控和日志分…