在上一篇文章(python在手,女神视频轻松有)分享了用AI人脸识别技术标记人物出现时间点来截取视频片段的教程,它的局限性在于只能通过识别特定的对象(比如人脸)来操作。在本文中将分享一个按场景进行分割视频的工具——PySceneDetect。
下面开始介绍下PySceneDetect及其安装使用方法。
1. 什么是PySceneDetect
PySceneDetect是一个命令行工具和Python库,用于分析视频,查找场景更改或剪辑。
PySceneDetect集成了外部工具(例如mkvmerge , ffmpeg ),可在使用split-video命令时自动将视频分割为单个片段。还可以为视频生成逐帧分析,称为统计文件,以帮助确定最佳阈值或检测特定视频的模式/其他分析方法。
PySceneDetect使用两种主要的检测方法: detect-threshold (将每个帧与设置的黑电平进行比较,对于检测从黑色到黑色的淡入和淡出有用)和detect-content (比较每个帧,依次查找内容的变化,有用)用于检测视频场景之间的快速切换,尽管处理速度较慢)。每种模式的参数略有不同,并在文档中进行了详细说明.。
通常,如果要使用淡入/淡出/切成黑色来检测场景边界,请使用检测阈值模式。如果视频在内容之间使用大量快速剪切,并且没有明确定义的场景边界,则应使用" 检测内容"模式。一旦知道要使用哪种检测模式,就可以尝试以下建议的参数,或生成统计文件(使用-s / –stats参数),以确定正确的参数-具体来说,是正确的阈值.
2. PySceneDetect的安装
PySceneDetect依赖于Python模块numpy,OpenCV(cv2模块)和tqdm(进度条模块,用来显示处理进度),安装命令如下:
$ pip install scenedetect
PySceneDetect基于ffmpeg和mkvmerge对视频进行裁剪。
ffmpeg 是一个开源软件,可以运行音频和视频多种格式的录影、转换、流功能,它功能强大,用途广泛,是视频处理最常用的开源软件。
mkvmerge是MKV工具集MKVToolNix中的一个软件,可以将多媒体文件封装、合并、混流为 MKV 文件。
安装完成后可以通过命令行或代码两种方式进行使用。
3. 命令行使用
PySceneDetect在命令行中使用scenedetect命令进行操作,命令格式如下:
$ scenedetect --input my_video.mp4 --output my_video_scenes --stats my_video.stats.csv detect-content list-scenes save-images
参数说明:
常用的参数说明如下:
- –input :输入视频文件的路径
- –output :指定输出目录(可选)
- –stats:生成统计文件(可选)
- time:用于设置输入视频持续时间/长度或开始/结束时间。
- detect-content:切分视频基于内容检测算法。
- detect-threshold:切分视频基于阈值检测算法。
- list-scenes:打印场景列表并输出到CSV文件。
- save-images:为每个场景保存视频中的图像。
- split-video:使用ffmpeg或mkvMerge对视频进行分割。
完整的参数列表可使用scenedetect help all
命令进行查看。
示例:
$ scenedetect --input demo.mp4 detect-content list-scenes save-images split-video
运行完成后会在当前文件夹生成视频片段,片段截图以及csv文件,如下:
demo-Scene-001-01.jpg demo-Scene-004-03.jpg ...
demo-Scene-001-02.jpg demo-Scene-004.mp4
...
demo-Scenes.csv
csv文件中包含片段的帧、时间、长度等信息,内容如下:
Timecode List: 00:07.9 00:14.6 00:38.7 00:45.3 00:48.9 01:00.0 01:12.3 01:21.5 01:36.3
Scene Number Start Frame Start Timecode Start Time (seconds) End Frame End Timecode End Time (seconds) Length (frames) Length (timecode) Length (seconds)
1 0 00:00.0 0 190 00:07.9 7.917 190 00:07.9 7.917
2 190 00:07.9 7.917 350 00:14.6 14.583 160 00:06.7 6.667
3 350 00:14.6 14.583 928 00:38.7 38.667 578 00:24.1 24.083
...
4. 在Python中使用
在Python中使用PySceneDetect主要用到下面几个类:
- VideoManager:用于加载视频并提供搜索;
- SceneManager:用于协调SceneDetector,VideoManager和可选的StatsManager对象的高级管理器;
- FrameTimecode:用于存储时间码以及对时间码值进行算术运算(加/减/比较),并具有帧级的精确度;
- StatsManager:用于存储/缓存帧指标,以加快在同一视频上后续场景检测的运行速度,并可以保存到CSV文件或从CSV中加载缓存;
- SceneDetector:用于实现检测算法的基类,如ContentDetector,ThresholdDetector等。
官方的示例代码如下:
from __future__ import print_function
import osimport scenedetect
from scenedetect.video_manager import VideoManager
from scenedetect.scene_manager import SceneManager
from scenedetect.frame_timecode import FrameTimecode
from scenedetect.stats_manager import StatsManager
from scenedetect.detectors import ContentDetectorSTATS_FILE_PATH = 'testvideo.stats.csv'def main():# Create a video_manager point to video file testvideo.mp4. Note that multiple# videos can be appended by simply specifying more file paths in the list# passed to the VideoManager constructor. Note that appending multiple videos# requires that they all have the same frame size, and optionally, framerate.video_manager = VideoManager(['testvideo.mp4'])stats_manager = StatsManager()scene_manager = SceneManager(stats_manager)# Add ContentDetector algorithm (constructor takes detector options like threshold).scene_manager.add_detector(ContentDetector())base_timecode = video_manager.get_base_timecode()try:# If stats file exists, load it.if os.path.exists(STATS_FILE_PATH):# Read stats from CSV file opened in read mode:with open(STATS_FILE_PATH, 'r') as stats_file:stats_manager.load_from_csv(stats_file, base_timecode)start_time = base_timecode + 20 # 00:00:00.667end_time = base_timecode + 20.0 # 00:00:20.000# Set video_manager duration to read frames from 00:00:00 to 00:00:20.video_manager.set_duration(start_time=start_time, end_time=end_time)# Set downscale factor to improve processing speed.video_manager.set_downscale_factor()# Start video_manager.video_manager.start()# Perform scene detection on video_manager.scene_manager.detect_scenes(frame_source=video_manager)# Obtain list of detected scenes.scene_list = scene_manager.get_scene_list(base_timecode)# Like FrameTimecodes, each scene in the scene_list can be sorted if the# list of scenes becomes unsorted.print('List of scenes obtained:')for i, scene in enumerate(scene_list):print(' Scene %2d: Start %s / Frame %d, End %s / Frame %d' % (i+1,scene[0].get_timecode(), scene[0].get_frames(),scene[1].get_timecode(), scene[1].get_frames(),))# We only write to the stats file if a save is required:if stats_manager.is_save_required():with open(STATS_FILE_PATH, 'w') as stats_file:stats_manager.save_to_csv(stats_file, base_timecode)finally:video_manager.release()if __name__ == "__main__":main()