spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能。当然主要对类SQL的支持。
在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选、合并,重新入库。
首先加载数据集,然后在提取数据集的前几行过程中,才找到limit的函数。
而合并就用到union函数,重新入库,就是registerTemple注册成表,再进行写入到HIVE中。
1、union、unionAll、unionByName,row 合并(上下拼接)
data_all = data_neg.unionByName(data_pos)
2、dataframe 样本抽样
data_all.sample(False, 0.5, 1000).count()
3、条件过滤
data_all.filter("label >= 1").count()
4、注册为临时表,再使用spark.sql 对dataframe进行操作
res = predictions.select("user_log_acct", split_udf('probability').alias('probability'))
res.registerTempTable("tmp")
spark.sql("insert overwrite table dev.dev_result_temp select user_log_acct,probability from tmp")
spark.stop()
创建和保存spark dataframe:
spark.createDataFrame(data, schema=None, samplingRatio=None),直接创建
其中data是行或元组或列表或字典的RDD、list、pandas.DataFrame。
df = spark.createDataFrame([
(1, 144.5, 5.9, 33, 'M'),
(2, 167.2, 5.4, 45, 'M'),
(3, 124.1, 5.2, 23, 'F'),
(4, 144.5, 5.9, 33, 'M'),
(5, 133.2, 5.7, 54, 'F'),
(3, 124.1, 5.2, 23, 'F'),
(5, 129.2, 5.3, 42, 'M'),
], ['id', 'weight', 'height', 'age', 'gender']) #直接创建Dataframe
df = spark.createDataFrame([{'name':'Alice','age':1},
{'name':'Polo','age':1}]) #从字典创建
schema = StructType([
StructField("id", LongType(), True),
StructField("name", StringType(), True),
StructField("age", LongType(), True),
StructField("eyeColor", StringType(), True)
])
df = spark.createDataFrame(csvRDD, schema) #指定schema。
spark.read 从文件中读数据
>>> airports = spark.read.csv(airportsFilePath, header='true', inferSchema='true', sep='\t')
>>> rdd = sc.textFile('python/test_support/sql/ages.csv') #可以用这种方法将用逗号分隔的rdd转为dataframe
>>> df2 = spark.read.csv(rdd)
>>> df = spark.read.format('json').load('python/test_support/sql/people.json')
>>> df1 = spark.read.json('python/test_support/sql/people.json')
>>> df1.dtypes
[('age', 'bigint'), ('name', 'string')]
>>> rdd = sc.textFile('python/test_support/sql/people.json')
>>> df2 = spark.read.json(rdd)
>>> df = spark.read.text('python/test_support/sql/text-test.txt')
>>> df.collect()
[Row(value='hello'), Row(value='this')]
>>> df = spark.read.text('python/test_support/sql/text-test.txt', wholetext=True)
>>> df.collect()
[Row(value='hello\nthis')]
Spark function
1)foreach(f),应用f函数,将df的每一行作为f函数的输入
例如:
def f(person):
print(person.name)
df.foreach(f)
2) apply(udf)
3) map(f),应用f函数,作用对象为rdd的每一行
参考:https://blog.csdn.net/kittyzc/article/details/82862089