[密码学基础][每个信息安全博士生应该知道的52件事][Bristol Cryptography][第6篇]我们怎么把NP问题解释成一组可以在多项式内证明的命题

这是密码学52件事的第六篇,我们继续解释复杂性理论,这篇我们给NP问题另一个定义。(注:就是说这节中,我们把**"问题是否为NP的"转换为另一组可以在多项式时间内判定的定理)**。

这个问题是紧接着上一周的问题的。上周我们回答了什么是复杂NP类问题。这周我们回答一个相关的问题—我们怎么把NP解释成一组能被多项式时间检查的命题。

现在我们看一个直觉上的"一个问题是NP的"这意味着什么?他不仅仅是一个直观的定义,更是清晰的说明了为什么这类复杂性问题对密码学和世界上其他问题那么重要。现在在我们讨论怎么用之前,我们先给出定义:

  • NP 是一类能在多项式时间内验证的语言

首先我们有一个元素x,我们想要知道是否x∈L(L是NP语言)。我们有一个证明P对x输出一个证据w,这可能需要要给多项式时间在给定x寻找w。然后如果我们给出x和w到我们的验证器V,V能够在多项式时间内输出是否x∈L。

我在看到这里的时候以我的知识有点不懂。 这里就是交互式证明系统,限制了交互的时间复杂度。那为什么非要给出一个V,然后给出一个P呢。这个是交互式证明系统定义的一部分。在这种计算模型(交互式证明系统)下,限制一下计算时间,就可以给出了NP问题的定义。 这里我十分推荐读下这节Sipser’s Introduction to the Theory of Computation, section 7.3.

这个定义似乎和上一周给出的不同,但是实际上他们是等价的。(Sipser的书中有精确的定义)。非正式的说,他们的等价性是因为w可以是NDT在每个分支节点做出的决定的序列,这样就从非确定的降级成确定的自动机了。(上面的那节也给出了精确的证明)。

因此为什么这个问题在密码学中那么有用呢?本质上,我们有一类这样的原因,如果你没有witness(凭据?密钥?)可以用指数时间来检查,但是如果你有这个witness那么你就可以用多项式时间来完成。这是很多密码学算法的feel。(23333)。例如,如果你不知道key那么你就很难解密这个消息,如果你知道key那么你很快就能解密出消息。

一个警告:虽然密码学中使用NP问题看起来是个不错的做法。但是它可能不是那么简单。因为NP问题的语言是基于最坏时间的。然而密码学中的算法是基于平均时间的。例如,我们有一种NP语言,一个元素需要指数级的时间求解,其他元素都非常快。这不是好的加密方案。我们希望对所有的消息都是安全的。而不是仅仅一个。

现在我们不知道整数因子分解=是不是NP完全的,也不知道是不是P类问题。但是它是一个例子。见Ryan的博客说明我想要说的关于仔细选择NP实例的问题。一般来说,找到一个数的因数很容易。其中一半能被2整除。但是如果我们选择一个特定的我们将会很难分解。让我们集中思路在形式N=p∗q对p,q素数。现在如果这两个数字有一个很小,那么分解它也是容易的,我们希望这两个数字大小接近。由此我们可以根据这个构建加密方案(RSA)。

[1] Equivalence_of_definitions

原文链接:http://bristolcrypto.blogspot.com/2014/11/52-things-number-6-how-can-we-interpret.html
转载链接:https://www.cnblogs.com/zhuowangy2k/p/11518770.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/425237.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ghjk

客户看看基本转载于:https://www.cnblogs.com/Majintao/p/10628174.html

2018蓝桥杯模拟赛·青出于蓝而胜于蓝 DFS序+树状数组

武当派一共有 nnn 人,门派内 nnn 人按照武功高低进行排名,武功最高的人排名第 111,次高的人排名第 222,... 武功最低的人排名第 nnn。现在我们用武功的排名来给每个人标号,除了祖师爷,每个人都有一个师父&a…

[Leetcode][第785题][JAVA][判断二分图][BFS][DFS]

【问题描述】[中等] 【解答思路】 1. DFS 深度优先遍历 时间复杂度:O(NM) 空间复杂度:O(N) class Solution {private static final int UNCOLORED 0;private static final int RED 1;private static final int GREEN 2;private int[] color;privat…

[剑指offer]面试题第[68-2]题[Leetcode][第236题][JAVA][二叉搜索树的最近公共祖先][递归]

【问题描述】[中等] 235/68-1 搜索二叉树 236/68-2 二叉树 【解答思路】 递归 时间复杂度:O(N) 空间复杂度:O(N) 情况 1. , 2. , 3. , 4. 的展开写法如下。 class Solution {public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, Tr…

Docker 查看镜像信息

Docker 查看镜像信息 原文:Docker 查看镜像信息文章首发个人网站: https://www.exception.site/docker/docker-look-up-image-info 本文中,我们将需要学习 Docker 如何查看镜像信息? 一、images 命令列出镜像 通过使用如下两个命令&#xff0…

[密码学基础][每个信息安全博士生应该知道的52件事][Bristol Cryptography][第7篇]随机性如何辅助计算和什么是BPP类问题

这篇是密码学52件事中第7篇.我们只要把问题集中在BPP复杂类问题. 目前为止,我们已经介绍了一些复杂类: P 是一类能在多项式时间内被可确定的图灵机判定的问题.NP是一类能在多项式时间内被非确定的图灵机判定的问题.BPP是一类在多项式时间内被概率图灵机解出的问题,并且对所有…

73 forward动作

定义一个logind的jsp页面 <% page language"java" import"java.util.*" contentType"text/html; charsetutf-8"%><!DOCTYPE html> <html> <head> <meta charset"ISO-8859-1"> <title>Insert tit…

Linux系统开发之路 - 下

5、Ubuntu安装好之后&#xff0c;就可以进行开发环境的搭建。&#xff08;坚持看完有彩蛋&#xff0c;(>--..--<).jpg&#xff09;。 1&#xff09;首先安装Nodejs和Npm。 打开浏览器输入nodejs.org&#xff0c;进入页面会提示下载&#xff0c;如下图&#xff0c;选择LTS…

[密码学基础][每个信息安全博士生应该知道的52件事][Bristol Cryptography][第8篇]交互式的定义如何帮助计算和IP类问题是什么

这是系列中的第8篇&#xff0c;我们主要讨论计算中交互作用的用处和IP类问题是什么. 什么是证明 经典的证明 交互式证明系统 [1] http://dl.acm.org/citation.cfm?id63434 [2] http://www.amazon.co.uk/Introduction-Theory-Computation-Michael-Sipser/dp/0619217642 [3] h…

线段树之扫描线思路

运用线段树扫描线方式可以解决经典的求矩形面积交问题以HDU_1542 Atlantis 题为例 线段树和扫描线是这么结合的线段树统计的是有效区间段的长度 也就是扫描线 当前扫描到的区间段是哪一个 什么意思 比如当前在哪一个段扫描 那么线段树中的t[1]中的len就是多长 线段树一般…

74 param动作

定义一个logind的jsp <% page language"java" import"java.util.*" contentType"text/html; charsetutf-8"%><!DOCTYPE html> <html> <head> <meta charset"ISO-8859-1"> <title>Insert title h…

Unknown column 'user_uid' in 'field list' sql错误解决过程

在idea中运行一直有错&#xff0c;找了好多个地方都找不到&#xff0c;以为是我的字段名字写错了&#xff0c;然而都是对的。 把错误的这个字段删了再打一遍就好了&#xff0c; 转载于:https://www.cnblogs.com/zxrxzw/p/10630164.html

[密码学基础][每个信息安全博士生应该知道的52件事][Bristol Cryptography][第9篇]香农对熵和信息的定义是什么?

这是计算机理论的最后一篇.我们讨论信息理论的基础概念,什么是香农定义的熵和信息. 熵 熵与确定性成反比 信息 密码学实例 [1] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory ​ 2nd Edition. Wiley-Interscience, 2 edition, July 2006. [2] S. Vaj…

数据结构:(5)算法分析基础

算法时间复杂度分析 算法空间复杂度分析

蠢货别忘(一)common lisp funcall

自定义 cons&#xff0c;car&#xff0c;cdr Scheme 示例&#xff1a; (define (my_cons x y) (lambda (z) (z x y))) (define (my_car m) (m (lambda (p q) p))) (define (my_cdr m) (m (lambda (p q) p))) Common Lisp&#xff1a; (defun my_cons (x y) (lambda (z) (funcal…

[Leetcode][第35题][JAVA][搜索插入位置][二分法]

【问题描述】[中等] 【解答思路】 二分法 时间复杂度&#xff1a;O(LogN) 空间复杂度&#xff1a;O(1) public class Solution {public int searchInsert(int[] nums, int target) {int len nums.length;if (len 0) {return 0;}// 特判if (nums[len - 1] < target) {re…

数据结构:(6)其他情况的算法分析

最好&#xff0c;最坏,平均复杂度分析 递归算法的时间复杂度分析

树状数组的区间修改+查询

首先看树状数组是用来求前缀和比较方便的一种数据结构 sum[i] Sigma a[i] Sum(bit[x]&#xff09; 而区间修改也不难实现 就是引入一个差分数组del del[i]表示对i~n的修改 这样的话也就是最del[i]求前缀和 就能得到i~n的所有修改了 因为i前的每一个元素的修改都是对后面…

scrapy爬虫系列之五--CrawlSpider的使用

功能点&#xff1a;CrawlSpider的基本使用 爬取网站&#xff1a;保监会 主要代码&#xff1a; cf.py # -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule import reclass CfSpider(CrawlSp…

洛谷P4718 【模板】Pollard-Rho算法

虽然很久以前就听说过PR算法&#xff0c;但前几天第一次打。 首先miller rabin判断素数&#xff0c;不在复杂度瓶颈。 pollard rho倍增环长&#xff0c;复杂度是\(O(n^{\frac{1}{4}} log n)\)的。 然而这样复杂度较高&#xff0c;比较难过加强后的数据。 可以考虑每次倍增时把乘…