第一百一十二期:96秒100亿!如何抗住双11高并发流量?

今年双 11 全民购物狂欢节进入第十一个年头,1 分 36 秒,交易额冲到 100 亿 !比 2018 年快了近 30 秒,比 2017 年快了近 1 分半!这个速度再次刷新天猫双 11 成交总额破 100 亿的纪录。

作者:邴越

今年双 11 全民购物狂欢节进入第十一个年头,1 分 36 秒,交易额冲到 100 亿 !比 2018 年快了近 30 秒,比 2017 年快了近 1 分半!这个速度再次刷新天猫双 11 成交总额破 100 亿的纪录。


图片来自 Pexels

那么如何抗住双 11 高并发流量?接下来让我们一起来聊聊高可用的“大杀器”限流降级技术。

服务等级协议

我们常说的 N 个 9,就是对 SLA 的一个描述。SLA 全称是 Service Level Agreement,翻译为服务水平协议,也称服务等级协议,它表明了公有云提供服务的等级以及质量。

例如阿里云对外承诺的就是一个服务周期内集群服务可用性不低于 99.99%,如果低于这个标准,云服务公司就需要赔偿客户的损失。

做到 4 个 9 够好了吗

对互联网公司来说,SLA 就是网站或者 API 服务可用性的一个保证。

9 越多代表全年服务可用时间越长服务更可靠,4 个 9 的服务可用性,听起来已经很高了,但对于实际的业务场景,这个值可能并不够。

我们来做一个简单的计算,假设一个核心链路依赖 20 个服务,强依赖同时没有配置任何降级,并且这 20 个服务的可用性达到 4 个 9,也就是 99.99%。

那这个核心链路的可用性只有 99.99 的 20 次方=99.8%,如果有 10 亿次请求则有 3,000,000 次的失败请求,理想状况下,每年还是有 17 小时服务不可用。

这是一个理想的估算,在实际的生产环境中,由于服务发布,宕机等各种各样的原因,情况肯定会比这个更差。

对于一些比较敏感的业务,比如金融,或是对服务稳定要求较高的行业,比如订单或者支付业务,这样的情况是不能接受的。

微服务的雪崩效应

除了对服务可用性的追求,微服务架构一个绕不过去的问题就是服务雪崩。

在一个调用链路上,微服务架构各个服务之间组成了一个松散的整体,牵一发而动全身,服务雪崩是一个多级传导的过程。

首先是某个服务提供者不可用,由于大量超时等待,继而导致服务调用者不可用,并且在整个链路上传导,继而导致系统瘫痪。

限流降级怎么做

如同上面我们分析的,在大规模微服务架构的场景下,避免服务出现雪崩,要减少停机时间,要尽可能的提高服务可用性。

提高服务可用性,可以从很多方向入手,比如缓存、池化、异步化、负载均衡、队列和降级熔断等手段。

缓存以及队列等手段,增加系统的容量。限流和降级则是关心在到达系统瓶颈时系统的响应,更看重稳定性。

缓存和异步等提高系统的战力,限流降级关注的是防御。限流和降级,具体实施方法可以归纳为八字箴言,分别是限流,降级,熔断和隔离。

限流和降级

限流顾名思义,提前对各个类型的请求设置最高的 QPS 阈值,若高于设置的阈值则对该请求直接返回,不再调用后续资源。

限流需要结合压测等,了解系统的最高水位,也是在实际开发中应用最多的一种稳定性保障手段。

降级则是当服务器压力剧增的情况下,根据当前业务情况及流量对一些服务和页面有策略的降级,以此释放服务器资源以保证核心任务的正常运行。

从降级配置方式上,降级一般可以分为主动降级和自动降级。主动降级是提前配置,自动降级则是系统发生故障时,如超时或者频繁失败,自动降级。

其中,自动降级,又可以分为以下策略:

  • 超时降级
  • 失败次数降级
  • 故障降级

在系统设计中,降级一般是结合系统配置中心,通过配置中心进行推送,下面是一个典型的降级通知设计。

熔断隔离

如果某个目标服务调用慢或者有大量超时,此时熔断该服务的调用,对于后续调用请求,不在继续调用目标服务,直接返回,快速释放资源。

熔断一般需要设置不同的恢复策略,如果目标服务情况好转则恢复调用。

服务隔离与前面的三个略有区别,我们的系统通常提供了不止一个服务,但是这些服务在运行时是部署在一个实例,或者一台物理机上面的。

如果不对服务资源做隔离,一旦一个服务出现了问题,整个系统的稳定性都会受到影响!服务隔离的目的就是避免服务之间相互影响。

一般来说,隔离要关注两方面,一个是在哪里进行隔离,另外一个是隔离哪些资源。

何处隔离:一次服务调用,涉及到的是服务提供方和调用方,我们所指的资源,也是两方的服务器等资源,服务隔离通常可以从提供方和调用方两个方面入手。

隔离什么:广义的服务隔离,不仅包括服务器资源,还包括数据库分库,缓存,索引等,这里我们只关注服务层面的隔离。

降级和熔断的区别

服务降级和熔断在概念上比较相近,通过两个场景,谈谈我自己的理解。

熔断,一般是停止服务:典型的就是股市的熔断,如果大盘不受控制,直接休市,不提供服务,是保护大盘的一种方式。

降级,通常是有备用方案:从北京到济南,下雨导致航班延误,我可以乘坐高铁,如果高铁票买不到,也可以乘坐汽车或者开车过去。

两者的区别:降级一般是主动的,有预见性的,熔断通常是被动的,服务 A 降级以后,一般会有服务 B 来代替,而熔断通常是针对核心链路的处理。

在实际开发中,熔断的下一步通常就是降级。

常用限流算法设计

刚才讲了限流的概念,那么怎样判断系统到达设置的流量阈值了?这就需要一些限流策略来支持,不同的限流算法有不同的特点,平滑程度也不同。

计数器法

计数器法是限流算法里最简单也是最容易实现的一种算法。

假设一个接口限制一分钟内的访问次数不能超过 100 个,维护一个计数器,每次有新的请求过来,计数器加一。

这时候判断,如果计数器的值小于限流值,并且与上一次请求的时间间隔还在一分钟内,允许请求通过,否则拒绝请求,如果超出了时间间隔,要将计数器清零。

 
public class CounterLimiter { //初始时间 private static long startTime = System.currentTimeMillis(); //初始计数值 private static final AtomicInteger ZERO = new AtomicInteger(0); //时间窗口限制 private static final long interval = 10000; //限制通过请求 private static int limit = 100; //请求计数 private AtomicInteger requestCount = ZERO; //获取限流 public boolean tryAcquire() { long now = System.currentTimeMillis(); //在时间窗口内 if (now < startTime + interval) { //判断是否超过最大请求 if (requestCount.get() < limit) { requestCount.incrementAndGet(); return true; } return false; } else { //超时重置 startTime = now; requestCount = ZERO; return true; } } 
} 

计数器限流可以比较容易的应用在分布式环境中,用一个单点的存储来保存计数值,比如用 Redis,并且设置自动过期时间,这时候就可以统计整个集群的流量,并且进行限流。

计数器方式的缺点是不能处理临界问题,或者说限流策略不够平滑。

假设在限流临界点的前后,分别发送 100 个请求,实际上在计数器置 0 前后的极短时间里,处理了 200 个请求,这是一个瞬时的高峰,可能会超过系统的限制。

计数器限流允许出现 2*permitsPerSecond 的突发流量,可以使用滑动窗口算法去优化,具体不展开。

漏桶算法

假设我们有一个固定容量的桶,桶底部可以漏水(忽略气压等,不是物理问题),并且这个漏水的速率可控的,那么我们可以通过这个桶来控制请求速度,也就是漏水的速度。

我们不关心流进来的水,也就是外部请求有多少,桶满了之后,多余的水会溢出。

漏桶算法的示意图如下:

将算法中的水换成实际应用中的请求,可以看到漏桶算法从入口限制了请求的速度。

使用漏桶算法,我们可以保证接口会以一个常速速率来处理请求,所以漏桶算法不会出现临界问题。

这里简单实现一下,也可以使用 Guava 的 SmoothWarmingUp 类,可以更好的控制漏桶算法:

 
public class LeakyLimiter { //桶的容量 private int capacity; //漏水速度 private int ratePerMillSecond; //水量 private double water; //上次漏水时间 private long lastLeakTime; public LeakyLimiter(int capacity, int ratePerMillSecond) { this.capacity = capacity; this.ratePerMillSecond = ratePerMillSecond; this.water = 0; } //获取限流 public boolean tryAcquire() { //执行漏水,更新剩余水量 refresh(); //尝试加水,水满则拒绝 if (water + 1 > capacity) { return false; } water = water + 1; return true; } private void refresh() { //当前时间 long currentTime = System.currentTimeMillis(); if (currentTime > lastLeakTime) { //距上次漏水的时间间隔 long millisSinceLastLeak = currentTime - lastLeakTime; long leaks = millisSinceLastLeak * ratePerMillSecond; //允许漏水 if (leaks > 0) { //已经漏光 if (water <= leaks) { water = 0; } else { water = water - leaks; } this.lastLeakTime = currentTime; } } } 
} 

令牌桶算法

漏桶是控制水流入的速度,令牌桶则是控制留出,通过控制 Token,调节流量。

假设一个大小恒定的桶,桶里存放着令牌(Token)。桶一开始是空的,现在以一个固定的速率往桶里填充,直到达到桶的容量,多余的令牌将会被丢弃。

如果令牌不被消耗,或者被消耗的速度小于产生的速度,令牌就会不断地增多,直到把桶填满。后面再产生的令牌就会从桶中溢出。

最后桶中可以保存的最大令牌数永远不会超过桶的大小,每当一个请求过来时,就会尝试从桶里移除一个令牌,如果没有令牌的话,请求无法通过。

 
public class TokenBucketLimiter { private long capacity; private long windowTimeInSeconds; long lastRefillTimeStamp; long refillCountPerSecond; long availableTokens; public TokenBucketLimiter(long capacity, long windowTimeInSeconds) { this.capacity = capacity; this.windowTimeInSeconds = windowTimeInSeconds; lastRefillTimeStamp = System.currentTimeMillis(); refillCountPerSecond = capacity / windowTimeInSeconds; availableTokens = 0; } public long getAvailableTokens() { return this.availableTokens; } public boolean tryAcquire() { //更新令牌桶 refill(); if (availableTokens > 0) { --availableTokens; return true; } else { return false; } } private void refill() { long now = System.currentTimeMillis(); if (now > lastRefillTimeStamp) { long elapsedTime = now - lastRefillTimeStamp; int tokensToBeAdded = (int) ((elapsedTime / 1000) * refillCountPerSecond); if (tokensToBeAdded > 0) { availableTokens = Math.min(capacity, availableTokens + tokensToBeAdded); lastRefillTimeStamp = now; } } } } 

这两种算法的主要区别在于漏桶算法能够强行限制数据的传输速率,而令牌桶算法在能够限制数据的平均传输速率外,还允许某种程度的突发传输。

在令牌桶算法中,只要令牌桶中存在令牌,那么就允许突发地传输数据直到达到用户配置的门限,因此它适合于具有突发特性的流量。

漏桶和令牌桶的比较

漏桶和令牌桶算法实现可以一样,但是方向是相反的,对于相同的参数得到的限流效果是一样的。

主要区别在于令牌桶允许一定程度的突发,漏桶主要目的是平滑流入速率,考虑一个临界场景,令牌桶内积累了 100 个 Token,可以在一瞬间通过。

但是因为下一秒产生 Token 的速度是固定的,所以令牌桶允许出现瞬间出现 permitsPerSecond 的流量,但是不会出现 2*permitsPerSecond 的流量,漏桶的速度则始终是平滑的。

使用 RateLimiter 实现限流

Google 开源工具包 Guava 提供了限流工具类 RateLimiter,该类基于令牌桶算法实现流量限制,使用方便。

RateLimiter 使用的是令牌桶的流控算法,RateLimiter 会按照一定的频率往桶里扔令牌,线程拿到令牌才能执行。

比如你希望自己的应用程序 QPS 不要超过 1000,那么 RateLimiter 设置 1000 的速率后,就会每秒往桶里扔 1000 个令牌,看下方法的说明:

RateLimter 提供的 API 可以直接应用,其中 acquire 会阻塞,类似 JUC 的信号量 Semphore,tryAcquire 方法则是非阻塞的:

 
  1. public class RateLimiterTest { 
  2.  
  3.     public static void main(String[] args) throws InterruptedException { 
  4.  
  5.         //允许10个,permitsPerSecond 
  6.         RateLimiter limiter = RateLimiter.create(10); 
  7.  
  8.         for(int i=1;i<20;i++){ 
  9.             if (limiter.tryAcquire(1)){ 
  10.                 System.out.println("第"+i+"次请求成功"); 
  11.             }else{ 
  12.                 System.out.println("第"+i+"次请求拒绝"); 
  13.             } 
  14.         } 
  15.     } 

总结

本文从服务可用性开始,分析了在业务高峰期通过限流降级保障服务高可用的重要性。

接下来分别探讨了限流,降级,熔断,隔离的概念和应用,并且介绍了常用的限流策略。

阅读目录(置顶)(长期更新计算机领域知识)

阅读目录(置顶)(长期更新计算机领域知识)

阅读目录(置顶)(长期科技领域知识)

歌谣带你看java面试题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/424146.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第一百一十三期:去伪存真,区块链应用到底能解决什么实际问题?

区块链技术仍然在发展初期&#xff0c;实践应用也停留在试水阶段。就金融等领域而言&#xff0c;区块链究竟意味着什么?今后实践应用的前景何在?在Libra的倒逼下&#xff0c;全球央行数字货币又将如何发展? 作者&#xff1a;第一财经 两周前&#xff0c;区块链成为热词。上…

两种战斗

两种战斗 Written by Allen Lee 战斗分两种&#xff0c;我们一定要把它们分开&#xff0c;就是为了维持生命的战斗&#xff0c;和为了维持自尊的战斗。 如果你无法分清的话&#xff0c;要么你将致使他失去生命。要么你将致使他失去自尊。“你要是现在去帮忙的话&#xff0c;或…

地图图元的闪烁效果制作

实现查找之后如果加上一个闪烁效果会更明显&#xff0c;方法是用个时间控件控制&#xff0c;改变vstyle即可&#xff1b;还可以简单的设置进程休眠时间&#xff0c;改变可视性&#xff0c;利用一个循环&#xff0c;控制闪烁次数。前面一种实现代码如下&#xff1a; 用个时间控件…

790. Domino and Tromino Tiling

文章目录1 题目理解2 动态规划2.1只有一种板2.2 有两种板1 题目理解 We have two types of tiles: a 2x1 domino shape, and an “L” tromino shape. These shapes may be rotated. XX <- domino XX <- “L” tromino X Given N, how many ways are there to tile a …

第一百一十四期:盘点十大最新Web UI测试工具

本文为您盘点目前十大最新Web UI测试工具的各自优缺点&#xff0c;以方便您根据实际情况进行选择。 作者&#xff1a;陈峻 在过去的几年中&#xff0c;业界至少出现了十二种全新的UI测试自动化工具。虽然每一种工具都有各自的侧重点&#xff0c;但是它们普遍将出色的可用性和…

通过Web Services上传和下载图片文件

通过Web Services上传和下载图片文件 随着Internet技术的发展和跨平台需求的日益增加&#xff0c;Web Services的应用越来越广&#xff0c;我们不但需要通过Web Services传递字符串信息&#xff0c;而且需要传递二进制文件信息。下面&#xff0c;我就分别介绍如何通过Web Servi…

第一百一十五期:Web开发必须掌握的三个技术:Token、Cookie、Session

在Web应用中&#xff0c;HTTP请求是无状态的。即&#xff1a;用户第一次发起请求&#xff0c;与服务器建立连接并登录成功后&#xff0c;为了避免每次打开一个页面都需要登录一下&#xff0c;就出现了cookie&#xff0c;Session。 作者&#xff1a;一颗小梪梪 在Web应用中&am…

第一百一十六期:不能错过!你必须知道的3种重要Python技能

学习Pandas是很棒的体验&#xff0c;学习Numpy也很有趣。但是&#xff0c;你是否过早地开始使用程序库了呢&#xff1f;这也许是因为你还没有意识到pure python的魅力。 作者&#xff1a;读芯术 学习Pandas是很棒的体验&#xff0c;学习Numpy也很有趣。但是&#xff0c;你是否…

第一百一十七期:爱上 Go 语言的10个理由

这个月 Go 语言就将迎来它的10岁生日了&#xff0c;于是我们特地列出了10条让你可以开心使用 Go 语言的理由。 作者&#xff1a;4bytes 这个月 Go 语言就将迎来它的10岁生日了&#xff0c;于是我们特地列出了10条让你可以开心使用 Go 语言的理由。 Map 集合/映射默认使用0值 …

第一百一十八期:运行 JavaScript 代码片段的 20 种工具

运行 JavaScript 代码片段的 20 种工具 前端日常开发中&#xff0c;我们使用喜爱的 IDE 调试 JavaScript 代码&#xff0c;比如我喜欢的代码编辑器有两个&#xff0c;Sublime Text 3 和 VS Code&#xff0c;前几年还使用过 Atom&#xff0c;偶尔我们会遇到临时需要快速分享给同…

spring mvc学习(25):Eclipse设置代码自动提示

Eclipse只需几步简单的设置就可以像idea那样代码自动提示了&#xff0c;喜欢的小伙伴可以赶紧动手设置&#xff0c;提升效率。 第一步&#xff1a;打开Eclipse --> Window --> Preferences 第二步&#xff1a;点击Java --> 打开Editor --> 点击Content Assist 第…

spring mvc学习(26):处理数据模型--从表单到controller传输数据

创建maven项目就不说了&#xff0c;需要的找我前面的博客 pom.xml文件 <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 http…

第一课 回归问题与应用

本系列是七月算法机器学习课程笔记 文章目录1 不同类型的学习2 基本术语与概念3 线性回归模型3.1 什么是线性回归3.2 损失函数3.3 最小化损失函数-梯度下降3.4 学习率有什么影响3.5 过拟合与欠拟合4 逻辑回归4.1 为什么要有逻辑回归4.2 什么是逻辑回归4.3决策边界线性边界判定非…

[推荐] TechNet 广播 SQL Server 2000完结篇

TechNet中文网络广播在之前已经推出了SQL Server 2000的基础系列和管理专家系列&#xff0c;使广大听众认识并掌握了SQL Server 2000的管理技巧。本次系列作为前两次系列课程的完结篇&#xff0c;将会从性能调优及维护的角度为广大听众提供了一道实用而精致的大餐&#xff0c;本…

spring mvc学习(28):get乱码解决

get请求乱码情况 编写一个RegistServlet处理用户的Get请求数据 View Code 运行结果发现输入中文提交后显示结果为乱码&#xff1a; jsp页面中 <meta http-equiv"content-type" content"text/html; charsetUTF-8">通知浏览器以utf-8解码 get请求…

第二课 决策树与随机森林

本系列是七月算法机器学习课程笔记 文章目录1 从LR到决策树1.1 决策树1.2 决策树的终止条件1.3 决策树划分依据1.3.1 信息熵1.3.2 信息增益1.3.3 ID3模型1.3.4 信息增益率1.3.5 基尼指数1.3.6 信息熵与基尼指数1.3.7 连续值属性2 回归树2.1 回归树构建方法3 从决策树到随机森林…

spring mvc学习(27):处理数据模型--从表单到controller传输数据续

创建maven项目就不说了&#xff0c;需要的找我前面的博客 pom.xml文件 <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 http…

第三课 SVM

本系列是七月算法机器学习课程笔记 文章目录1 问题2 key idea 13 key idea 24 key idea 35 key idea46 拉格朗日乘子求解7 核函数的发现学习SVM不要先看数学公式&#xff0c;这样把SVM的精华都丢掉了。学习SVM学习作者是如何构建出这样一个算法的过程。1 问题 无论线性分类、逻…

spring mvc学习(29):modelandview向页面传输数据

创建maven项目就不说了&#xff0c;需要的找我前面的博客 pom.xml文件 <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 http…

RESTORE DATABASE命令还原SQLServer 2005 数据库

今天在sqlServer20005 的management studio里使用bak文件还原数据库的时候,总是失败!Restore failed for Server ADANDELI. (Microsoft.SqlServer.Smo)An exception occurred while executing a Transact-SQL statement or batch. (Microsoft.SqlServer.ConnectionInfoThe bac…