GC算法 垃圾收集器

 

概述

垃圾收集 Garbage Collection 通常被称为“GC”,它诞生于1960年 MIT 的 Lisp 语言,经过半个多世纪,目前已经十分成熟了

jvm 中,程序计数器、虚拟机栈、本地方法栈都是随线程而生随线程而灭,栈帧随着方法的进入和退出做入栈和出栈操作,实现了自动的内存清理,因此,我们的内存垃圾回收主要集中于 java 堆和方法区中,在程序运行期间,这部分内存的分配和使用都是动态的.

 

对象存活判断

判断对象是否存活一般有两种方式:

引用计数:每个对象有一个引用计数属性,新增一个引用时计数加1,引用释放时计数减1,计数为0时可以回收。此方法简单,无法解决对象相互循环引用的问题。

可达性分析(Reachability Analysis):从GC Roots开始向下搜索,搜索所走过的路径称为引用链。当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的。不可达对象。

在Java语言中,GC Roots包括:

  虚拟机栈中引用的对象。

  方法区中类静态属性实体引用的对象。

  方法区中常量引用的对象。

  本地方法栈中JNI引用的对象。

 

垃圾收集算法

标记 -清除算法

   “标记-清除”(Mark-Sweep)算法,如它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其缺点进行改进而得到的。

它的主要缺点有两个:一个是效率问题,标记和清除过程的效率都不高;另外一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

wpsA73E.tmp

 

复制算法

“复制”(Copying)的收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。

这样使得每次都是对其中的一块进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为原来的一半,持续复制长生存期的对象则导致效率降低。

wps9D31.tmp

 

标记-压缩算法

复制收集算法在对象存活率较高时就要执行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

根据老年代的特点,有人提出了另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存

wps3952.tmp

 

分代收集算法

GC分代的基本假设:绝大部分对象的生命周期都非常短暂,存活时间短。

“分代收集”(Generational Collection)算法,把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清理”或“标记-整理”算法来进行回收。

 

垃圾收集器

   结合参考:https://blog.csdn.net/strong997/article/details/80033787 学习的垃圾回收器

     如果说收集算法是内存回收的方法论,垃圾收集器就是内存回收的具体实现

 

Serial收集器

串行收集器是最古老,最稳定以及效率高的收集器,可能会产生较长的停顿,只使用一个线程去回收。新生代、老年代使用串行回收;新生代复制算法老年代标记-压缩;垃圾收集的过程中会Stop The World(服务暂停)

参数控制:-XX:+UseSerialGC  串行收集器

 

wpsA77.tmp

 

 

ParNew收集器

ParNew收集器其实就是Serial收集器的多线程版本。新生代并行,老年代串行;新生代复制算法、老年代标记-压缩

参数控制:-XX:+UseParNewGC  ParNew收集器

-XX:ParallelGCThreads 限制线程数量

 

wps6A83.tmp

Parallel收集器

Parallel Scavenge收集器类似ParNew收集器,Parallel收集器更关注系统的吞吐量。可以通过参数来打开自适应调节策略,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或最大的吞吐量;也可以通过参数控制GC的时间不大于多少毫秒或者比例;新生代复制算法、老年代标记-压缩

参数控制:-XX:+UseParallelGC  使用Parallel收集器+ 老年代串行

         

Parallel Old 收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在JDK 1.6中才开始提供

参数控制: -XX:+UseParallelOldGC 使用Parallel收集器+ 老年代并行

 

CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用都集中在互联网站或B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。

从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于“标记-清除”算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为4个步骤,包括: 

初始标记(CMS initial mark)

并发标记(CMS concurrent mark)

重新标记(CMS remark)

并发清除(CMS concurrent sweep)

 其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。 
      由于整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行老年代收集器(新生代使用ParNew)

  优点:并发收集低停顿 

   缺点:产生大量空间碎片并发阶段会降低吞吐量

   参数控制:-XX:+UseConcMarkSweepGC  使用CMS收集器

             -XX:+ UseCMSCompactAtFullCollection Full GC后,进行一次碎片整理;整理过程是独占的,会引起停顿时间变长

            -XX:+CMSFullGCsBeforeCompaction  设置进行几次Full GC后,进行一次碎片整理

            -XX:ParallelCMSThreads  设定CMS的线程数量(一般情况约等于可用CPU数量)

wpsCA6E.tmp

         

G1收集器

G1是目前技术发展的最前沿成果之一,HotSpot开发团队赋予它的使命是未来可以替换掉JDK1.5中发布的CMS收集器。与CMS收集器相比G1收集器有以下特点:

1. 空间整合,G1收集器采用标记整理算法,不会产生内存空间碎片。分配大对象时不会因为无法找到连续空间而提前触发下一次GC。

2. 可预测停顿,这是G1的另一大优势,降低停顿时间是G1和CMS的共同关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为N毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。

上面提到的垃圾收集器,收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔阂了,它们都是一部分(可以不连续)Region的集合。

wps3B4C.tmp

 

G1的新生代收集跟ParNew类似,当新生代占用达到一定比例的时候,开始出发收集。和CMS类似,G1收集器收集老年代对象会有短暂停顿。

 

收集步骤

1、标记阶段,首先初始标记(Initial-Mark),这个阶段是停顿的(Stop the World Event),并且会触发一次普通Mintor GC。对应GC log:GC pause (young) (inital-mark)

2、Root Region Scanning,程序运行过程中会回收survivor区(存活到老年代),这一过程必须在young GC之前完成。

3、Concurrent Marking,在整个堆中进行并发标记(和应用程序并发执行),此过程可能被young GC中断。在并发标记阶段,若发现区域对象中的所有对象都是垃圾,那个这个区域会被立即回收(图中打X)。同时,并发标记过程中,会计算每个区域的对象活性(区域中存活对象的比例)。

wps93E7.tmp

4、Remark, 再标记,会有短暂停顿(STW)。再标记阶段是用来收集 并发标记阶段 产生新的垃圾(并发阶段和应用程序一同运行);G1中采用了比CMS更快的初始快照算法:snapshot-at-the-beginning (SATB)。

5、Copy/Clean up,多线程清除失活对象,会有STW。G1将回收区域的存活对象拷贝到新区域,清除Remember Sets,并发清空回收区域并把它返回到空闲区域链表中。

wps47EC.tmp

6、复制/清除过程后。回收区域的活性对象已经被集中回收到深蓝色和深绿色区域。

wpsEAB1.tmp

 

常用的收集器组合

 新生代GC策略年老代GC策略说明
组合1SerialSerial Old

Serial和Serial Old都是单线程进行GC,特点就是GC时暂停所有应用线程。

组合2SerialCMS+Serial OldCMS(Concurrent Mark Sweep)是并发GC,实现GC线程和应用线程并发工作,不需要暂停所有应用线程。另外,当CMS进行GC失败时,会自动使用Serial Old策略进行GC。
组合3

ParNew

CMS

使用-XX:+UseParNewGC选项来开启。ParNew是Serial的并行版本,可以指定GC线程数,默认GC线程数为CPU的数量。可以使用-XX:ParallelGCThreads选项指定GC的线程数。

如果指定了选项-XX:+UseConcMarkSweepGC选项,则新生代默认使用ParNew GC策略。

组合4

ParNew

Serial Old使用-XX:+UseParNewGC选项来开启。新生代使用ParNew GC策略,年老代默认使用Serial Old GC策略。
组合5

Parallel Scavenge

Serial Old

Parallel Scavenge策略主要是关注一个可控的吞吐量:应用程序运行时间 / (应用程序运行时间 + GC时间),可见这会使得CPU的利用率尽可能的高,适用于后台持久运行的应用程序,而不适用于交互较多的应用程序。

组合6

Parallel Scavenge

Parallel Old

Parallel Old是Serial Old的并行版本

 

组合7

G1GC

G1GC

-XX:+UnlockExperimentalVMOptions -XX:+UseG1GC        #开启
-XX:MaxGCPauseMillis =50                  #暂停时间目标
-XX:GCPauseIntervalMillis =200          #暂停间隔目标
-XX:+G1YoungGenSize=512m            #年轻代大小
-XX:SurvivorRatio=6                            #幸存区比例

 

参考

http://my.oschina.net/hosee/blog/644618

深入理解Java虚拟机:JVM高级特性与最佳实践 pdf

下载地址http://download.csdn.net/detail/ityouknow/9557109

转发:http://www.cnblogs.com/ityouknow/p/5614961.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/423397.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nginx----原理

原理 master-workers的机制的好处  首先,对于每个worker进程来说,独立的进程,不需要加锁,所以省掉了锁带来的开销,同时在编程以及问题查找时,也会方便很多。其次,采用独立的进程,可…

一个有趣的数学题

题目:abcde*4 edcba,求abcde 解题过程: 1. 首先确定a和e,a*4不可能是两位数,不然abcde*4的值肯定大于5位,所以a的取值为1或2,e为4或8; 2. 又e*4的的个位为a,则a2&#x…

JVM架构和GC垃圾回收机制--面试

JVM架构和GC垃圾回收机制详解 JVM架构图分析 下图:参考网络书籍,如有侵权请见谅 (想了解Hadoop内存溢出请看: Hadoop内存溢出(OOM)分类、参数调优化) JVM被分为三个主要的子系统 (1)类加载器…

学习HTML:iframe用法总结收藏

<iframe>是框架的一种形式&#xff0c;也比较常用到。 一&#xff1a;几个例子——演示iframe的基本用法 例1&#xff1a;<iframe width420 height330 frameborder0 scrollingauto src"URL" mce_src"URL"></iframe> 不用多说了&#xf…

java中线程池的几种实现方式

1、线程池简介&#xff1a; 多线程技术主要解决处理器单元内多个线程执行的问题&#xff0c;它可以显著减少处理器单元的闲置时间&#xff0c;增加处理器单元的吞吐能力。 假设一个服务器完成一项任务所需时间为&#xff1a;T1 创建线程时间&#xff0c;T2 在线程中…

MySQL----分库分表

参考&#xff1a;https://mp.weixin.qq.com/s?__bizMzI5MzYzMDAwNw&mid2247487130&idx2&sn7d384ef9ca47b933e801fdd2459b6b2f&chksmec6e77c2db19fed4a3ed3a0625c1f318675a0a10fdb1ce8a31f032b91ee31377e1ee1e183258&mpshare1&scene23&srcid0927Uq…

IP过滤-驱动和应用程序通信

前段时间写一个IP过滤的驱动&#xff0c;以前没有接触过驱动&#xff0c;Google一把&#xff0c;网上有很多例子&#xff0c;不过都不能满足自己的需求&#xff0c;所以就参考大家的资料自己研究一下。呵呵。程序用了三层&#xff1a;第一层就是驱动来负责过滤数据包并把拦截的…

JVM架构和GC垃圾回收机制详解

JVM架构图分析 下图&#xff1a;参考网络书籍&#xff0c;如有侵权请见谅 &#xff08;想了解Hadoop内存溢出请看&#xff1a; Hadoop内存溢出(OOM)分类、参数调优化&#xff09; JVM被分为三个主要的子系统 &#xff08;1&#xff09;类加载器子系统&#xff08;2&#xff0…

IIS不能发布asp.net 应用程序

IIS不能发布asp.net 应用程序最近在写程序的时候&#xff0c;突然项目经理想发布一下网站看一下做的效果当我发布的时候遇到 下面的错误&#xff1a;&#xff1a;使用 XSL 样式表无法查看 XML 输入。请更正错误然后单击 刷新按钮&#xff0c;或以后重试。 名称以无效字符开头的…

线程高级篇-Lock锁和Condition条件

浅谈Synchronized: synchronized是Java的一个关键字,也就是Java语言内置的特性,如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,执行代码块时,其他线程 便只能一直等待,等待获取锁的线程释放锁,而获取锁的线程释放锁会有三种情况: 1).获取锁的线程执行完该代码…

CERL 2.0 预告:Erlang Style Concurrency + 状态机

开始构想CERL 2.0版本。特点&#xff1a; Erlang Style Concurrency&#xff08;Erlang 风格并发&#xff09; 状态机&#xff0c;突破 Erlang Style Concurrency 模型的缺陷。在目前的 CERL 库 SDL接口描述语言的基础上&#xff0c;CERL 2.0 还将是一门语言&#xff08;用于实…

枚举类型创建实例

使用枚举创建单例模式 使用枚举创建的单例模式&#xff1a; public enum EasySingleton{INSTANCE; } 代码就这么简单&#xff0c;你可以使用EasySingleton.INSTANCE调用它&#xff0c;比起你在单例中调用getInstance()方法容易多了。 我们来看看正常情况下是怎样创建单例模…

前端学习(41):背景实现视觉差效果

首先准备三张图片 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><meta http-equiv"X-UA-Compatible&quo…

CAS原理分析

在JDK 5之前Java语言是靠synchronized关键字保证同步的&#xff0c;这会导致有锁&#xff08;后面的章节还会谈到锁&#xff09;。 锁机制存在以下问题&#xff1a; &#xff08;1&#xff09;在多线程竞争下&#xff0c;加锁、释放锁会导致比较多的上下文切换和调度延时&…

深入理解HashMap(原理,查找,扩容)

面试的时候闻到了Hashmap的扩容机制&#xff0c;之前只看到了Hasmap的实现机制&#xff0c;补一下基础知识&#xff0c;讲的非常好 原文链接&#xff1a; http://www.iteye.com/topic/539465 Hashmap是一种非常常用的、应用广泛的数据类型&#xff0c;最近研究到相关的内容&…

密码加密和解密

/// <summary> /// 字符串加密 /// </summary> /// <param name"original">明文</param> /// <returns>密文</returns> public static string Encrypt(string original) { …

【C++深度剖析教程1】C++中的经典问题解析-c++中的对象的构造顺序与析构顺序

c中的对象的构造顺序与析构顺序 问题一 当程序中存在多个对象时&#xff0c;如何确定这些对象的析构顺序&#xff1f; 一.单个函数创建时构造函数的调用顺序 1.调用父类的构造过程 2.调用成员变量的构造函数(调用顺序与声明顺序相同) 3.调用类自身的构造函数 而析构函数与…

ASP.NET MVC 重点教程一周年版 第七回 UrlHelper 【转】

这节讲 一下ASP.NET MVC中的Helper。 何谓Helper,其实就是在View中为了实现一些灵活功能而写的方法组。 其实ASP.NET MVC的View是Aspx的页面,本身可以声明定义方法,那为什么要有Helper呢&#xff1f; 其实无非是将界面与逻辑分离,而且Asp.net MVC也并不只支持Aspx一种View&…

【C++深度剖析教程2】C++经典问题解析之二 this指针与成员函数

隐藏的this指针&#xff0c;所有对象共享类的成员函数 写一篇博客花费时间虽然长&#xff0c;但是却让你对内容的记忆尤为深刻&#xff0c;尤其是你对它的态度。记录菜鸟的成长日记&#xff0c;也希望同为菜鸟的你们与我一起共同进步&#xff01;&#xff01;现在分享的是C的学…

uml 类图整理

1.五分钟读懂UML类图 http://www.cnblogs.com/shindo/p/5579191.html 2.UML类关系&#xff08;依赖&#xff0c;关联&#xff0c;聚合&#xff0c;组合的区别&#xff09; https://www.jianshu.com/p/eefa0b5b4922 2.1 关联 1、关联关系 关联关系又可进一步分为单向关联、…