大家好,我是烤鸭:
今天分享下 micrometer 的源码,和springboot集成 自定义endpoint 的使用。
1. 文档信息
官方文档:
http://micrometer.io/docs
github:
https://github.com/micrometer-metrics/micrometer
springboot集成:
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready-metrics
2. 简单介绍
监测信息包括 jvm、memory、cpu、tomcat 等等。
网上关于 springboot 集成和使用,也有很多文章,这里就不赘述了。
本篇文章主要是源码分析和简单场景使用。
本文代码地址:
https://gitee.com/fireduck_admin/micrometer-demo/tree/master
3. 源码分析
3.1 micrometer-core 包的源码
说几个核心类:
MeterRegistry.java
注册表中心用来管理应用的注册表,再遍历注册表获取指标。
public abstract class MeterRegistry {protected final Clock clock;private final Object meterMapLock = new Object();private volatile MeterFilter[] filters = new MeterFilter[0];private final List<Consumer<Meter>> meterAddedListeners = new CopyOnWriteArrayList<>();private final List<Consumer<Meter>> meterRemovedListeners = new CopyOnWriteArrayList<>();private final Config config = new Config();private final More more = new More();//...
}
MeterBinder.java
绑定容器内部测量的父类接口。(所有需要测量类的重写这个接口就行)
/*** Binders register one or more metrics to provide information about the state* of some aspect of the application or its container.* <p>* Binders are enabled by default if they source data for an alert* that is recommended for a production ready app.*/
public interface MeterBinder {void bindTo(@NonNull MeterRegistry registry);
}
Gauge
Meter的子类,Meter是测量指标(可以理解为值对象),而Gauge是指标的瞬时值(普通的对象)。
/*** A gauge tracks a value that may go up or down. The value that is published for gauges is* an instantaneous sample of the gauge at publishing time.** @author Jon Schneider*/
public interface Gauge extends Meter {/*** @param name The gauge's name.* @param obj An object with some state or function which the gauge's instantaneous value* is determined from.* @param f A function that yields a double value for the gauge, based on the state of* {@code obj}.* @param <T> The type of object to gauge.* @return A new gauge builder.*/static <T> Builder<T> builder(String name, @Nullable T obj, ToDoubleFunction<T> f) {return new Builder<>(name, obj, f);}//...
}
我们以其中某个类分析下:
JvmThreadMetrics.java
监测 JVM 线程变化的
@Overridepublic void bindTo(MeterRegistry registry) {ThreadMXBean threadBean = ManagementFactory.getThreadMXBean();Gauge.builder("jvm.threads.peak", threadBean, ThreadMXBean::getPeakThreadCount).tags(tags).description("The peak live thread count since the Java virtual machine started or peak was reset").baseUnit(BaseUnits.THREADS).register(registry);Gauge.builder("jvm.threads.daemon", threadBean, ThreadMXBean::getDaemonThreadCount).tags(tags).description("The current number of live daemon threads").baseUnit(BaseUnits.THREADS).register(registry);Gauge.builder("jvm.threads.live", threadBean, ThreadMXBean::getThreadCount).tags(tags).description("The current number of live threads including both daemon and non-daemon threads").baseUnit(BaseUnits.THREADS).register(registry);for (Thread.State state : Thread.State.values()) {Gauge.builder("jvm.threads.states", threadBean, (bean) -> getThreadStateCount(bean, state)).tags(Tags.concat(tags, "state", getStateTagValue(state))).description("The current number of threads having " + state + " state").baseUnit(BaseUnits.THREADS).register(registry);}}
创建 Gauge 内部类builder 和 当前的 registry 绑定,我们看下方法注释怎么说的。
对单例的注册表添加一个指标测量对象,或者返回一个已存在的。返回的是当前注册表唯一的,每个注册表保证相同名字和标签只创建一个指标测量对象。
/*** Add the gauge to a single registry, or return an existing gauge in that registry. The returned* gauge will be unique for each registry, but each registry is guaranteed to only create one gauge* for the same combination of name and tags.** @param registry A registry to add the gauge to, if it doesn't already exist.* @return A new or existing gauge.*/public Gauge register(MeterRegistry registry) {return registry.gauge(new Meter.Id(name, tags, baseUnit, description, Type.GAUGE, syntheticAssociation), obj,strongReference ? new StrongReferenceGaugeFunction<>(obj, f) : f);}
上面就是一个收集信息的过程,简单来说 收集到的信息放到注册表,需要的时候来取。看一下springboot的actuator的源码。
3.2 spring-boot-starter-actuator 的源码
先说一下 endpoint 这个关键的包。
其中一个 Endpoint 注解(执行器断点),带有这个注解的执行器会被公开。
/*** Identifies a type as being an actuator endpoint that provides information about the* running application. Endpoints can be exposed over a variety of technologies including* JMX and HTTP.**/
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface Endpoint {/*** The id of the endpoint (must follow {@link EndpointId} rules).* @return the id* @see EndpointId*/String id() default "";/*** If the endpoint should be enabled or disabled by default.* @return {@code true} if the endpoint is enabled by default*/boolean enableByDefault() default true;}
简单来说:
带有这个注解的类,会被增加到servlet,路径是 basePath+注解的id属性。源码是这个类。
EndpointDiscoverer.createEndpointBeans
private Collection<EndpointBean> createEndpointBeans() {Map<EndpointId, EndpointBean> byId = new LinkedHashMap<>();String[] beanNames = BeanFactoryUtils.beanNamesForAnnotationIncludingAncestors(this.applicationContext,Endpoint.class);for (String beanName : beanNames) {if (!ScopedProxyUtils.isScopedTarget(beanName)) {EndpointBean endpointBean = createEndpointBean(beanName);EndpointBean previous = byId.putIfAbsent(endpointBean.getId(), endpointBean);Assert.state(previous == null, () -> "Found two endpoints with the id '" + endpointBean.getId() + "': '"+ endpointBean.getBeanName() + "' and '" + previous.getBeanName() + "'");}}return byId.values();
}
找到带有Endpoint注解的类,比如 MetricsEndpoint.class,metric 就是请求 /actuator/metrics/jvm.gc.max.data.size 调用的方法。
@Endpoint(id = "metrics")
public class MetricsEndpoint {//...@ReadOperationpublic MetricResponse metric(@Selector String requiredMetricName, @Nullable List<String> tag) {List<Tag> tags = parseTags(tag);Collection<Meter> meters = findFirstMatchingMeters(this.registry, requiredMetricName, tags);if (meters.isEmpty()) {return null;}Map<Statistic, Double> samples = getSamples(meters);Map<String, Set<String>> availableTags = getAvailableTags(meters);tags.forEach((t) -> availableTags.remove(t.getKey()));Meter.Id meterId = meters.iterator().next().getId();return new MetricResponse(requiredMetricName, meterId.getDescription(), meterId.getBaseUnit(),asList(samples, Sample::new), asList(availableTags, AvailableTag::new));}//...}
知道Endpoint,尝试写自己的监控指标。
4. 实现自定义micrometer
简单点的方式:
自定义 RedisMetric 重写 bindTo方法,访问 /metric/redis.get.info 就可以看到指标了
package com.maggie.measure.micrometer.metric;import java.util.concurrent.atomic.AtomicInteger;import io.micrometer.core.instrument.*;
import io.micrometer.core.instrument.binder.MeterBinder;
import org.springframework.stereotype.Component;@Component
public class RedisMetric implements MeterBinder {public static AtomicInteger atomicInteger = new AtomicInteger(0);@Overridepublic void bindTo(MeterRegistry meterRegistry) {Gauge.builder("redis.get.count", atomicInteger, c -> c.get()).tags("host", "localhost").description("demo of custom meter binder").register(meterRegistry);}}
实现一个监控redis get/set 方法的次数统计。
访问 http://localhost:8081/get
结果如图,value就是调用的次数 11次。
稍微复杂点,实现拦截 redis get/set 方法,统计get/set 方法 的key以及每个key 的调用次数。
自定义 endponit 实现,自定义的好处是路径变成了 endpoint的id,比如我下边的路径就是 ./redis
/*** @program: micrometer-demo* @description: redis监控断点*/
@Component
@Endpoint(id = "redis")
public class RedisRegistryEndpoint {private final MeterRegistry registry;public RedisRegistryEndpoint(MeterRegistry registry) {this.registry = registry;}@ReadOperationpublic String home() {Set<String> set = new HashSet<>();set.add("redis.get.info");set.add("redis.set.info");return JSONObject.toJSONString(set);}@ReadOperationpublic String metric(@Selector String tagName) {tagName = tagName.replaceAll("\\.", "").replaceAll("redis", "").replaceAll("info", "");return JSONObject.toJSONString(RedisMetric.param.get(tagName));}
}
统计次数和key的是通过aop实现的,由于没办法直接拦截 redisTemplate 所以我封装了一个redis工具类方法。
package com.maggie.measure.micrometer.aspect;import com.maggie.measure.micrometer.metric.RedisMetric;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.aspectj.lang.reflect.MethodSignature;
import org.springframework.stereotype.Component;import java.util.HashMap;
import java.util.Map;@Aspect
@SuppressWarnings("all")
@Component("redisApiAspect")
public class RedisApiAspect {public static Map incrMap = new HashMap<>();@Pointcut("execution(public * com.maggie.measure.micrometer.service.RedisOpsValService.*(..))")private void redisApi() {}@Around("redisApi()")public Object doProfiling(ProceedingJoinPoint point) throws Throwable {long initTime = System.currentTimeMillis();long sTime = initTime, eTime = initTime;MethodSignature methodSignature = null;Object proceed = null;try {methodSignature = (MethodSignature) point.getSignature();} finally {String met = methodSignature.getName(); // 拦截方法名称Object[] args = point.getArgs(); // 拦截的方法参数proceed = point.proceed();if ("get".equals(met)) {RedisMetric.atomicGetInteger.getAndIncrement();}if ("set".equals(met)) {RedisMetric.atomicSetInteger.getAndIncrement();}if (RedisMetric.param.get(met) != null) {Map<String, Object> metMap = RedisMetric.param.get(met);incrMap.put(met + "incr", Double.valueOf((Integer) metMap.getOrDefault(met + "incr", 0) + 1));int incr = (Integer) incrMap.getOrDefault(met + args[0] + "incr", 0) + 1;incrMap.put(met + args[0] + "incr", incr);if (args != null && args[0] instanceof String) {metMap.put((String) args[0], incr);}} else {Map<String, Object> metMap = new HashMap<>();incrMap.put(met + "incr", Double.valueOf((Integer) metMap.getOrDefault(met + "incr", 0) + 1));int incr = (Integer) incrMap.getOrDefault(met + args[0] + "incr", 0) + 1;if (incrMap.get(met + args[0] + "incr") == null) {incrMap.put(met + args[0] + "incr", incr);}if (args != null && args[0] instanceof String) {metMap.put((String) args[0], incr);}RedisMetric.param.put(met, metMap);}}return proceed;}
}
结果如图:
可以看出 查哪些参数(get.info,set.info),以及 get/set 的key和单个key的调用次数。
5. 总结
实现系统监控有很多方式,micrometer-metrics 是个不错的开源框架,而且springboot 封装的也挺好的。关于拉式(提供接口,外部调用)还是推式(上报,http/socket 等等)方案的选择,还是看自己的业务场景。量大(服务器数量多且服务多)的时候无论采用哪种都不太好,不仅对性能损耗,而且维护麻烦,不易升级。这里只是看了 metrics 源码, 做了一个简单场景的尝试,其实可做的方向还很多。
其实关于方式的选择,留着以后说吧。