opencv进阶08-K 均值聚类cv2.kmeans()介绍及示例

K均值聚类是一种常用的无监督学习算法,用于将一组数据点分成不同的簇(clusters),以便数据点在同一簇内更相似,而不同簇之间差异较大。K均值聚类的目标是通过最小化数据点与所属簇中心之间的距离来形成簇。

当我们要预测的是一个离散值时,做的工作就是“分类”。例如,要预测一个孩子能否成为优秀的运动员,其实就是要将他分到“好苗子”(能成为优秀的运动员)或“普通孩子”(不能成为优秀运动员)的类别。当我们要预测的是一个连续值时,做的工作就是“回归”。

例如,预测一个孩子将来成为运动员的指数,计算得到的是 0.99 或者 0.36 之类的数值。机器学习模型还可以将训练集中的数据划分为若干个组,每个组被称为一个“簇(cluster)”。

这些自动形成的簇,可能对应着不同的潜在概念,例如“篮球苗子”、“长跑苗子”。这种学习方式被称为“聚类(clusting)”,它的重要特点是在学习过程中不需要用标签对训练样本进行标注。也就是说,学习过程能够根据现有训练集自动完成分类(聚类)。

根据训练数据是否有标签,我们可以将学习划分为监督学习和无监督学习。

前面介绍的 K近邻、支持向量机都是监督学习,提供有标签的数据给算法学习,然后对数据分类。而聚类是无监督学习,事先并不知道分类标签是什么,直接对数据分类。

举一个简单的例子,有 100 粒豆子,如果已知其中 40 粒为绿豆,40 粒为大豆,根据上述标签,将剩下的 20 粒豆子划分为绿豆和大豆则是监督学习。

针对上述问题可以使用 K 近邻算法,计算当前待分类豆子的大小,并找出距离其最近的 5 粒豆子的大小,判断这 5 粒豆子中哪种豆子最多,将当前豆子判定为数量最多的那一类豆子类别。

同样,有 100 粒豆子,我们仅仅知道这些豆子里有两个不同的品种,但并不知道到底是什么品种。此时,可以根据豆子的大小、颜色属性,或者根据大小和颜色的组合属性,将其划分为两个类型。在此过程中,我们没有使用已知标签,也同样完成了分类,此时的分类是一种无监督学习。

聚类是一种无监督学习,它能够将具有相似属性的对象划分到同一个集合(簇)中。聚类方法能够应用于所有对象,簇内的对象越相似,聚类算法的效果越好。

理论基础

本节首先用一个实例来介绍 K 均值聚类的基本原理,在此基础上介绍 K 均值聚类的基本步骤,最后介绍一个二维空间下的 K 均值聚类示例。

分豆子

假设有 6 粒豆子混在一起,我们可以在不知道这些豆子类别的情况下,将它们按照直径大小划分为两类。

经过测量,以 mm(毫米)为单位,这些豆子的直径大小分别为 1、2、3、10、20、30。下面将它们标记为 A、B、C、D、E、F,并进行分类操作。

第 1 步:随机选取两粒参考豆子。例如,随机将直径为 1mm 的豆子 A 和直径为 2 mm 的豆子 B 作为分类参考豆子。

第 2 步:计算每粒豆子的直径距离豆子 A 和豆子 B 的距离。距离哪个豆子更近,就将新豆子划分在哪个豆子所在的组。使用直径作为距离计算依据时,计算结果如表 22-1 所示。

在这里插入图片描述
在本步骤结束时,6 粒豆子被划分为以下两组。

  • 第 1 组:只有豆子 A。
  • 第 2 组:豆子 B、C、D、E、F,共 5 粒豆子。

第 3 步:分别计算第 1 组豆子和第 2 组豆子的直径平均值。然后,将各个豆子按照与直径
平均值的距离大小分组。

  • 计算第 1 组豆子的平均值 AV1 = 1mm。
  • 计算第 2 组豆子的平均值 AV2 = (2+3+10+20+30)/5 = 13mm。

得到上述平均值以后,对所有的豆子再次分组:

  • 将平均值 AV1 所在的组,标记为 AV1 组。
  • 将平均值 AV2 所在的组,标记为 AV2 组。

计算各粒豆子距离平均值 AV1 和 AV2 的距离,并确定分组,如表 22-2 所示。

在这里插入图片描述
距离平均值 AV1 更近的豆子,就被划分为 AV1 组;距离平均值 AV2 更近的豆子,就被划分为 AV2 组。现在,6 粒豆子的分组情况为:

  • AV1 组:豆子 A、豆子 B、豆子 C。
  • AV2 组:豆子 D、豆子 E、豆子 F。

第4 步:重复第 3 步,直到分组稳定不再发生变化,即可认为分组完成。
在本例中,重新计算 AV1 组的平均值 AV41、AV2 组的平均值 AV42,依次计算每个豆子与平均值 AV41 和 AV42 的距离,并根据该距离重新划分分组。按照与第 3 步相同的方法,重新计算平均值并分组后,6 粒豆子的分组情况为:

  • AV41 组:豆子 A、豆子 B、豆子 C。
  • AV42 组:豆子 D、豆子 E、豆子 F。

与上一次的分组相比,并未发生变化,我们就认为分组完成了
我们将直径较小的那一组称为“小豆子”,直径较大的那一组称为“大豆子”。

当然,本例是比较极端的例子,数据很快就实现了收敛,在实际处理中可能需要进行多轮的迭代才能实现数据的收敛,分类不再发生变化。

K 均值聚类函数

OpenCV 提供了函数 cv2.kmeans()来实现 K 均值聚类。该函数的语法格式为:

retval, bestLabels, centers=cv2.kmeans(data, K, bestLabels, criteria,
attempts, flags)

式中各个参数的含义为:

  • data:输入的待处理数据集合,应该是 np.float32 类型,每个特征放在单独的一列中。

  • K:要分出的簇的个数,即分类的数目,最常见的是 K=2,表示二分类。

  • bestLabels:表示计算之后各个数据点的最终分类标签(索引)。实际调用时,参数bestLabels 的值设置为 None。

  • criteria:算法迭代的终止条件。当达到最大循环数目或者指定的精度阈值时,算法停止继续分类迭代计算。该参数由 3 个子参数构成,分别为 type、max_iter 和 eps。
    type 表示终止的类型,可以是三种情况,分别为:

    • cv2.TERM_CRITERIA_EPS:精度满足 eps 时,停止迭代。
    • cv2.TERM_CRITERIA_MAX_ITER:迭代次数超过阈值 max_iter 时,停止迭代。
    • cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER:上述两个条件中的
      任意一个满足时,停止迭代。
  • max_iter:最大迭代次数。

  • eps:精确度的阈值。

  • attempts:在具体实现时,为了获得最佳分类效果,可能需要使用不同的初始分类值进
    行多次尝试。指定 attempts 的值,可以让算法使用不同的初始值进行多次(attempts 次)
    尝试。

  • flags:表示选择初始中心点的方法,主要有以下 3 种。

    • cv2.KMEANS_RANDOM_CENTERS:随机选取中心点。
    • cv2.KMEANS_PP_CENTERS:基于中心化算法选取中心点。
    • cv2.KMEANS_USE_INITIAL_LABELS:使用用户输入的数据作为第一次分类中心点;
      如果算法需要尝试多次(attempts 值大于 1 时),后续尝试都是使用随机值或者半随
      机值作为第一次分类中心点。
      返回值的含义为:
  • retval:距离值(也称密度值或紧密度),返回每个点到相应中心点距离的平方和。

  • bestLabels:各个数据点的最终分类标签(索引)。

  • centers:每个分类的中心点数据。

示例:有一堆米粒,按照长度和宽度对它们分类。

为了方便理解,假设米粒有两种,其中一种是 XM,另外一种是 DM。它们的直径不一样,XM 的长和宽都在[0, 20]内,DM 的长和宽都在[40, 60]内。使用随机数模拟两种米粒的长度和宽度,并使用函数 cv2.kmeans()对它们分类。
根据题目要求,主要步骤如下:

(1)随机生成两组米粒的数据,并将它们转换为函数 cv2.kmeans()可以处理的形式。
(2)设置函数 cv2.kmeans()的参数形式。
(3)调用函数 cv2.kmeans()。
(4)根据函数 cv2.kmeans()的返回值,确定分类结果。
(5)绘制经过分类的数据及中心点,观察分类结果。

代码如下:

import numpy as np
import cv2
from matplotlib import pyplot as plt
# 随机生成两组数值
# xiaomi ,长和宽都在[0,20]
xiaomi = np.random.randint(0,20,(30,2))
#dami ,长和宽的大小都在[40,60]dami = np.random.randint(40,60,(30,2))
# 组合数据
MI = np.vstack((xiaomi,dami))
# 转换为 float32 类型
MI = np.float32(MI)
# 调用 kmeans 模块
# 设置参数 criteria 值
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
# 调用 kmeans 函数
ret,label,center=cv2.kmeans(MI,2,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
'''
#打印返回值
print(ret)
print(label)
print(center)
'''
# 根据 kmeans 的处理结果,将数据分类,分为 XM 和 DM 两大类
XM = MI[label.ravel()==0]
DM = MI[label.ravel()==1]
# 绘制分类结果数据及中心点
plt.scatter(XM[:,0],XM[:,1],c = 'g', marker = 's')
plt.scatter(DM[:,0],DM[:,1],c = 'r', marker = 'o')
plt.scatter(center[0,0],center[0,1],s = 200,c = 'b', marker = 'o')
plt.scatter(center[1,0],center[1,1],s = 200,c = 'b', marker = 's')
plt.xlabel('Height'),plt.ylabel('Width')
plt.show()

在这里插入图片描述
右上方的小方块是标签为“0”的数据点,左下方的圆点是标签为“1”的
数据点。右上方稍大的圆点是标签“0”的数据组的中心点;左下方稍大的方块是标签为“1”的数据组的中心点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/40166.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

opencv实现以图搜图

这里写目录标题 1. 步骤1.1 导入OpenCV库:1.2 加载图像1.3 提取特征1.4 匹配特征1.5 显示结果 2. 完整代码3. 测试图片及效果 1. 步骤 1.1 导入OpenCV库: 在您的C代码中,首先需要导入OpenCV库。您可以使用以下语句导入核心模块:…

化繁为简,使用Hibernate Validator实现参数校验

前言 在之前的悦享校园的开发中使用了SSM框架,由于当时并没有使用参数参数校验工具,方法的入参判断使用了大量的if else语句,代码十分臃肿,因此最近在重构代码时,将框架改为SpringBoot后,引入了Hibernate V…

有一种新型病毒在 3Ds Max 环境中传播,如何避免?

3ds Max渲染慢,可以使用渲云渲染农场: 渲云渲染农场解决本地渲染慢、电脑配置不足、紧急项目渲染等问题,可批量渲染,批量出结果,速度快,效率高。 此外3dmax支持的CG MAGIC插件专业版正式上线,…

0基础学习VR全景平台篇 第85篇:智慧眼-如何分配角色的权限?

一、功能说明 角色权限,是指给智慧眼的所有角色成员分配具体的操作权限。 二、后台编辑界面 1、点击“添加权限”,选择其可操作的“权限”。注意权限只能逐项选择,所以如果某个角色拥有多项权限的话,那么需要进行多次添加。“快…

uniapp app 实现右上角回首页;点homeButton返回上一页;onNavigationBarButtonTap不生效问题

场景: app,Android移动端 实现点击右上角图标,回首页。 问题:用了官网的 homeButton,图标正常展示了,也可点击,但每次点击后是会返回上一页而非首页。 后来查到说,要结合onNavigatio…

linux两台服务器互相备份文件(sshpass + crontab)

crontab crontab是linux系统自带的定时调度软件,可用于设置周期性被执行的指令,一般用在每天的非高峰负荷时间段运行作业,可在无需人工干预的情况下运行作业。支持在一周或一月中的不同时段运行。 crontab命令允许用户提交、编辑或删除相应的…

滴滴Ceph分布式存储系统优化之锁优化

摘自:https://mp.weixin.qq.com/s/oWujGOLLGItu1Bv5AuO0-A 2020-09-02 21:45 0.引言 Ceph是国际知名的开源分布式存储系统,在工业界和学术界都有着重要的影响。Ceph的架构和算法设计发表在国际系统领域顶级会议OSDI、SOSP、SC等上。Ceph社区得到Red Hat…

C语言——动态内存管理

动态内存管理详解 前言:一、为什么存在动态内存分配二、动态内存函数2.1malloc函数2.2calloc函数2.3realloc函数2.4free函数 三、常见的动态内存错误3.1 对NULL指针解引用操作3.2 对动态开辟空间的越界访问3.3 对非动态开辟内存使用free释放3.4 使用free释放动态开辟…

Unity UI内存泄漏优化

项目一运行,占用的内存越来越多,不会释放,导致GC越来越频繁,越来越慢,这些都是为什么呢,今天从UI方面谈起。 首先让我们来聊聊什么是内存泄漏呢? 一般来讲内存泄漏就是指我们的应用向内存申请…

Rabbitmq消息不丢失

目录 一、消息不丢失1.消息确认2.消息确认业务封装2.1 发送确认消息测试2.2 消息发送失败,设置重发机制 一、消息不丢失 消息的不丢失,在MQ角度考虑,一般有三种途径: 1,生产者不丢数据 2,MQ服务器不丢数据…

设计HTML5列表和超链接

在网页中,大部分信息都是列表结构,如菜单栏、图文列表、分类导航、新闻列表、栏目列表等。HTML5定义了一套列表标签,通过列表结构实现对网页信息的合理排版。另外,网页中还包含大量超链接,通过它实现网页、位置的跳转&…

小程序CSS button按钮自定义高度之后不居中

问题&#xff1a; 按钮设置高度后不居中 <view><button class"btn1" size"">Save</button> </view> page {font-size: 30rpx; }.btn1 {margin-top: 100rpx;height: 190rpx;background: linear-gradient(90deg, #FF8A06, #FF571…

Wi-Fi 安全在学校中的重要性

Wi-Fi 是教育机构的基础设施&#xff0c;从在线家庭作业门户到虚拟教师会议&#xff0c;应有尽有。大多数 K-12 管理员对自己的 Wi-Fi 网络的安全性充满信心&#xff0c;并认为他们现有的网络安全措施已经足够。 不幸的是&#xff0c;这种信心往往是错误的。Wi-Fi 安全虽然经常…

【数据结构OJ题】链表中倒数第k个结点

原题链接&#xff1a;https://www.nowcoder.com/practice/529d3ae5a407492994ad2a246518148a?tpId13&&tqId11167&rp2&ru/activity/oj&qru/ta/coding-interviews/question-ranking 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 …

VectorStyler for Mac: 让你的创意无限绽放的全新设计工具

VectorStyler for Mac是一款专为Mac用户打造的矢量设计工具&#xff0c;它结合了功能强大的矢量编辑器和创意无限的样式编辑器&#xff0c;让你的创意无限绽放。 VectorStyler for Mac拥有直观简洁的用户界面&#xff0c;让你能够轻松上手。它提供了丰富的矢量绘图工具&#x…

JavaWeb博客项目--推荐算法--完整代码及思路

基于用户的协同过滤算法&#xff08;UserCF&#xff09; 因为我写的是博客项目&#xff0c;博客数量可能比用户数量还多 所以选择基于用户的协同过滤算法 重要思想 当要向用户u进行推荐时&#xff0c;我们先找出与用户u最相似的几个用户&#xff0c;再从这几个用户的喜欢的物…

数据可视化和数字孪生相互促进的关系

数据可视化和数字孪生是当今数字化时代中备受关注的两大领域&#xff0c;它们在不同层面和领域为我们提供了深入洞察和智能决策的机会&#xff0c;随着两种技术的不断融合发展&#xff0c;很多人会将他们联系在一起&#xff0c;本文就带大家浅谈一下二者之间相爱相杀的关系。 …

Springboot集成ip2region离线IP地名映射-修订版

title: Springboot集成ip2region离线IP地名映射 date: 2020-12-16 11:15:34 categories: springboot description: Springboot集成ip2region离线IP地名映射 1. 背景2. 集成 2.1. 步骤2.2. 样例2.3. 响应实例DataBlock2.4. 响应实例RegionAddress 3. 打开浏览器4. 源码地址&…

OpenShift 4 - 基于 MinIO 安装 Red Hat Quay 镜像仓库

《OpenShift / RHEL / DevSecOps 汇总目录》 说明&#xff1a;本文已经在 OpenShift 4.13 Quay 3.9 的环境中验证 本文适合在单机 OpenShift 环境安装 Red Hat Quay 镜像仓库。 另外《OpenShift 4 - 安装 ODF 并部署红帽 Quay (1 Worker)》也可以在单节点部署。 而《OpenShif…