C语言——动态内存管理

动态内存管理详解

  • 前言:
  • 一、为什么存在动态内存分配
  • 二、动态内存函数
    • 2.1malloc函数
    • 2.2calloc函数
    • 2.3realloc函数
    • 2.4free函数
  • 三、常见的动态内存错误
    • 3.1 对NULL指针解引用操作
    • 3.2 对动态开辟空间的越界访问
    • 3.3 对非动态开辟内存使用free释放
    • 3.4 使用free释放动态开辟内存的一部分
    • 3.5 对同一块内存多次释放
    • 3.6 动态开辟内存忘记释放(内存泄漏)
  • 四、几个经典的例子
  • 五、c/c++程序的内存分配
  • 六、柔性数组
    • 6.1柔型数组的特点
    • 6.2 柔性数组的使用
    • 6.3柔性数组的优势

前言:

我们一般开辟内存是直接开辟空间,开辟了空间就不会改变了,为了更节约空间,避免浪费空间,我们可以动态的开辟空间。这样,空间用完了,我们可以扩充空间。

一、为什么存在动态内存分配

我们已经掌握的内存开辟方式:

int vai=10; / /在栈空间上开辟四个字节。
int arr[10]={0}; / /在栈空间上开辟40个字节的连续空间。
特点:

  1. 空间开辟大小是固定的。
  2. 数组在申明的时候,必须指定长度,才能在编译的时候分配空间。
    对于空间的需求,不仅仅是上述的情况,有时候我们需要的空间大小只有在程序运行的时候才会知道,数组在编译时开辟空间的方式就不能满足了。

二、动态内存函数

关于动态内存函数的知识,可以参考我的另一篇文章动态内存函数详解

2.1malloc函数

void* malloc(size_t size);

malloc函数向内存申请一块连续可用的空间,返回指向这个空间的指针。
malloc函数申请到空间后直接返回这块空间的起始地址,不会初始化空间的内容。
malloc申请的空间,当程序退出时,还给操作系统,当程序不退出,动态申请的内存,不会主动释放,需要用free函数来释放

2.2calloc函数

void* calloc(size_t num , size_t size) ;

calloc函数也可以申请动态内存空间。并且给空间初始化为0。

2.3realloc函数

void* realloc( void* ptr , size_t size);

realloc函数可以申请动态内存空间,使动态内存空间管理更灵活。

2.4free函数

void* free (void* ptr ) ;

free函数只能释放动态开辟的内存。

三、常见的动态内存错误

3.1 对NULL指针解引用操作

可能运行成功

#include <stdio.h>
#include <stdlib.h>
void test()
{int* p = (int*)malloc(10 * sizeof(int));*p = 20;//如果p的值是NULL就会有问题free(p);
}
int main()
{test();return 0;
}

解决方法:需要对空指针进行判定(空指针不能被赋值,就是p为空不能解引用)

#include <stdio.h>
#include <stdlib.h>
void test()
{int* p = (int*)malloc(10 * sizeof(int));if (p == NULL){perror("malloc");return;}*p = 20;//如果p的值是NULL就会有问题free(p);
}
int main()
{test();return 0;
}

3.2 对动态开辟空间的越界访问

越界访问系统会崩溃

#include <stdio.h>
#include <stdlib.h>
void test()
{int i = 0;int* p = (int*)malloc(10 * sizeof(int));if (p == NULL){perror("malloc");return;}for (i = 0; i <= 10; i++){*(p + i) = i + 1;//当i=10时,越界访问}free(p);
}
int main()
{test();return 0;
}

解决:因为要访问的空间存在越界问题,那么我们就让它不越界访问

#include <stdio.h>
#include <stdlib.h>
void test()
{int i = 0;int* p = (int*)malloc(10 * sizeof(int));if (p == NULL){perror("malloc");return;}for (i = 0; i < 10; i++)//改为i < 10{*(p + i) = i + 1;}free(p);
}
int main()
{test();return 0;
}

3.3 对非动态开辟内存使用free释放

程序崩溃

#include <stdio.h>
#include <stdlib.h>
void test()
{int a = 10;int* p = &a;//释放非动态开辟内存空间有问题free(p);//不行,运行程序系统崩溃
}
int main()
{test();return 0;
}

解决方法:非动态开辟的内存不要用free函数释放

3.4 使用free释放动态开辟内存的一部分

系统崩溃

#include <stdio.h>
#include <stdlib.h>
void test()
{int* p = (int*)malloc(10 * sizeof(int));if (p == NULL){perror("malloc");return;}int i = 0;for (i = 0; i < 5; i++){*p = i;p++;}//释放free(p);//p不在指向动态内存的起始位置p = NULL;
}
int main()
{test();return 0;
}

解决问题:动态开辟内存起始位置不能乱使用,释放的时候要从起始位置全部释放(开辟的一块连续的空间)

p++;(这里p不是指向开辟空间的起始位置,释放的是后面的一部分,前面没有释放,程序崩溃了。)

3.5 对同一块内存多次释放

程序崩溃了,不允许这么操作。

#include <stdio.h>
#include <stdlib.h>
void test()
{int* p = (int*)malloc(10 * sizeof(int));if (p == NULL){perror("malloc");return;}//使用//释放free(p);//释放free(p);//重复释放,程序就崩了
}
int main()
{test();return 0;
}

解决方法:第一次释放结束,把p置NULL,下一次释放,释放空指针,啥事都不干。

#include <stdio.h>
#include <stdlib.h>
void test()
{int* p = (int*)malloc(10 * sizeof(int));if (p == NULL){perror("malloc");return;}//使用//释放free(p);//释放结束,把p置空p = NULL;//释放free(p);
}
int main()
{test();return 0;
}

3.6 动态开辟内存忘记释放(内存泄漏)

找不到p,没有释放技术内存泄漏

#include <stdio.h>
#include <stdlib.h>
void test()
{int* p = (int*)malloc(100);if (p == NULL){perror("malloc");return;}*p = 20;
}
int main()
{test();//回来之后,p被销毁while (1);return 0;
}
  1. 把100个字节空间的起始地址赋值给p。
  2. p是函数里的局部变量。
  3. 出了这个函数p被销毁,找不到这100个字节的空间了,但是这100个字节的空间还在。

解决方法:只有两种方式可以销毁。

  • free函数释放。
  • 程序结束(退出)

注意:
动态申请的内存空间不会因为出了作用域就自动销毁,也·不会把内存还给操作系统。

四、几个经典的例子

题目1:
存在两个问题

#include <stdio.h>
#include <stdlib.h>
void Getmemory(char* p)
{p = (char*)malloc(100);//没有释放空间,存在内存泄漏的问题
}
void test()
{char* str = NULL;Getmemory(str);strcpy(str, "hello world");//不能对空指针进行解引用操作,程序会崩溃。printf(str);
}
int main()
{test();return 0;
}

题目2:
存在一个问题

#include <stdio.h>
#include <string.h>
char* Getmemory()
{char p[] = "hello world";//函数结束,内存释放,空间还给操作系统。
}
void test(void)
{char* str = NULL;str=Getmemory();//记住了地址,却找不到数据(这是个野指针,它非法访问)strcpy(str, "hello world");printf(str);
}
int main()
{test();return 0;
}

题目3:
存在一个问题

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
void Getmemory(char** p, int num)
{*p = (char*)malloc(num);
}
void test(void)
{char* str = NULL;Getmemory(&str,100);strcpy(str, "hello world");printf(str);//内存泄漏//free(str);//str=NULL;
}
int main()
{test();return 0;
}

题目4:
存在一个问题

#include <stdio.h>
#include <string.h>
#include <stdlib.h>void test(void)
{char* str =(char*) malloc(100);strcpy(str, "hello");free(str);//内存被释放,str成为野指针。if (str != NULL)//肯定成立{strcpy(str, "world");//非法访问printf(str);}printf(str);
}
int main()
{test();return 0;
}

五、c/c++程序的内存分配

初步了解c/c++中内存区域的划分:
在这里插入图片描述
1.栈区(stack) :在执行函数时, 函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。栈区主要存放运行函数而分配的局部变量、 函数参数、返回数据、返回地址等。
2.堆区(heap) :一般由程序员分配释放, 若程序员不释放, 程序结束时可能由OS回收,分配方式类似于链表,
3.数据段(静态区) (static): 存放全局变量,静态数据。 程序结束后由系统释放。
4.代码段:存放函数体(类成员函数和全局函数)的二进制代码。
注意:
实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,直到程序结束才销毁。
所以static修饰的变量生命周期变长了。

六、柔性数组

结构体中,最后一个成员是数组或者是指针,他们是有区别的。
c99中,结构体的最后一个成员可以是未知大小的数组,这叫柔性数组的成员。
结构体:

typedef struct st
{int i;int arr[];  
}ts;

6.1柔型数组的特点

结构体中柔性数组前面必须至少有一个其他成员。
sizeof返回的这种结构的大小不包括柔性数组的内存。(只计算柔性数组前面成员的大小)
包含柔性数组成员的结构用malloc()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。
如:

ts* ps = (ts*)malloc(sizeof(ts) + 40);

6.2 柔性数组的使用

int main()
{
int i = 0;
ts* p = (ts*)malloc(sizeof(ts) + 100 * sizeof(int));
if (p == NULL)
{perror("malloc");return 0 ;
}p->i = 100;
for (i = 0; i < 100; i++)
{p->arr[i] = i + 1;
}
free(p);
p = NULL;
return 0;
}

柔性数组成员a,相当于获得了100个整型元素的连续空间

6.3柔性数组的优势

代码1:

int i = 0;
ts* p = (ts*)malloc(sizeof(ts) + 100 * sizeof(int));
if (p == NULL)
{perror("malloc");return 0 ;
}p->i = 100;
for (i = 0; i < 100; i++)
{p->arr[i] = i + 1;
}
free(p);
p = NULL;

代码2:

typedef struct st
{int i;int* p;
}ts;
ts* ps = (ts*)malloc(sizeof(ts));
ps->i = 100;
ps->p = (int*)malloc(ps->i * sizeof(int));
for (i = 0; i < 100; i++)
{ps->p[i] = i + 1;
}
//释放空间
free(ps->p);//先释放里面
ps->p = NULL;
free(ps);//后释放外面
ps = NULL;

上面代码1代码2可以完成相同的功能,但是代码1的实现有两种好处。
第一个好处:方便内存释放
如果我们的代码是在一个给别人用的函数中, 你在里面做了二次内存分配并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。
第二个好处:这样有利于访问速度
连续的内存有益于提高访问速度,也有益于减少内存碎片。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/40153.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity UI内存泄漏优化

项目一运行&#xff0c;占用的内存越来越多&#xff0c;不会释放&#xff0c;导致GC越来越频繁&#xff0c;越来越慢&#xff0c;这些都是为什么呢&#xff0c;今天从UI方面谈起。 首先让我们来聊聊什么是内存泄漏呢&#xff1f; 一般来讲内存泄漏就是指我们的应用向内存申请…

Rabbitmq消息不丢失

目录 一、消息不丢失1.消息确认2.消息确认业务封装2.1 发送确认消息测试2.2 消息发送失败&#xff0c;设置重发机制 一、消息不丢失 消息的不丢失&#xff0c;在MQ角度考虑&#xff0c;一般有三种途径&#xff1a; 1&#xff0c;生产者不丢数据 2&#xff0c;MQ服务器不丢数据…

设计HTML5列表和超链接

在网页中&#xff0c;大部分信息都是列表结构&#xff0c;如菜单栏、图文列表、分类导航、新闻列表、栏目列表等。HTML5定义了一套列表标签&#xff0c;通过列表结构实现对网页信息的合理排版。另外&#xff0c;网页中还包含大量超链接&#xff0c;通过它实现网页、位置的跳转&…

小程序CSS button按钮自定义高度之后不居中

问题&#xff1a; 按钮设置高度后不居中 <view><button class"btn1" size"">Save</button> </view> page {font-size: 30rpx; }.btn1 {margin-top: 100rpx;height: 190rpx;background: linear-gradient(90deg, #FF8A06, #FF571…

Wi-Fi 安全在学校中的重要性

Wi-Fi 是教育机构的基础设施&#xff0c;从在线家庭作业门户到虚拟教师会议&#xff0c;应有尽有。大多数 K-12 管理员对自己的 Wi-Fi 网络的安全性充满信心&#xff0c;并认为他们现有的网络安全措施已经足够。 不幸的是&#xff0c;这种信心往往是错误的。Wi-Fi 安全虽然经常…

【数据结构OJ题】链表中倒数第k个结点

原题链接&#xff1a;https://www.nowcoder.com/practice/529d3ae5a407492994ad2a246518148a?tpId13&&tqId11167&rp2&ru/activity/oj&qru/ta/coding-interviews/question-ranking 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 …

VectorStyler for Mac: 让你的创意无限绽放的全新设计工具

VectorStyler for Mac是一款专为Mac用户打造的矢量设计工具&#xff0c;它结合了功能强大的矢量编辑器和创意无限的样式编辑器&#xff0c;让你的创意无限绽放。 VectorStyler for Mac拥有直观简洁的用户界面&#xff0c;让你能够轻松上手。它提供了丰富的矢量绘图工具&#x…

JavaWeb博客项目--推荐算法--完整代码及思路

基于用户的协同过滤算法&#xff08;UserCF&#xff09; 因为我写的是博客项目&#xff0c;博客数量可能比用户数量还多 所以选择基于用户的协同过滤算法 重要思想 当要向用户u进行推荐时&#xff0c;我们先找出与用户u最相似的几个用户&#xff0c;再从这几个用户的喜欢的物…

数据可视化和数字孪生相互促进的关系

数据可视化和数字孪生是当今数字化时代中备受关注的两大领域&#xff0c;它们在不同层面和领域为我们提供了深入洞察和智能决策的机会&#xff0c;随着两种技术的不断融合发展&#xff0c;很多人会将他们联系在一起&#xff0c;本文就带大家浅谈一下二者之间相爱相杀的关系。 …

Springboot集成ip2region离线IP地名映射-修订版

title: Springboot集成ip2region离线IP地名映射 date: 2020-12-16 11:15:34 categories: springboot description: Springboot集成ip2region离线IP地名映射 1. 背景2. 集成 2.1. 步骤2.2. 样例2.3. 响应实例DataBlock2.4. 响应实例RegionAddress 3. 打开浏览器4. 源码地址&…

OpenShift 4 - 基于 MinIO 安装 Red Hat Quay 镜像仓库

《OpenShift / RHEL / DevSecOps 汇总目录》 说明&#xff1a;本文已经在 OpenShift 4.13 Quay 3.9 的环境中验证 本文适合在单机 OpenShift 环境安装 Red Hat Quay 镜像仓库。 另外《OpenShift 4 - 安装 ODF 并部署红帽 Quay (1 Worker)》也可以在单节点部署。 而《OpenShif…

前后端分离------后端创建笔记(11)用户删除

B站视频&#xff1a;30-用户删除&结束语_哔哩哔哩_bilibili 1、现在我们要做一个删除的功能 1.1 首先做一个删除的功能接口&#xff0c;第一步先来到后端&#xff0c;做一个删除的接口 2、删除我们用Delete请求 3、方法名我给他改一下 3.1这里给他调一下删除方法&#xf…

在一小时内构建您的深度学习应用程序

一、说明 我已经做了将近十年的数据分析。有时&#xff0c;我使用机器学习技术从数据中获取见解&#xff0c;并且我习惯于使用经典 ML。 虽然我已经通过了神经网络和深度学习的一些MOOC&#xff0c;但我从未在我的工作中使用过它们&#xff0c;这个领域对我来说似乎很有挑战性。…

智能数据建模软件DTEmpower 2023R2新版本功能介绍

DTEmpower是由天洑软件自主研发的一款通用的智能数据建模软件&#xff0c;致力于帮助工程师及工科专业学生&#xff0c;利用工业领域中的仿真、试验、测量等各类数据进行挖掘分析&#xff0c;建立高质量的数据模型&#xff0c;实现快速设计评估、实时仿真预测、系统参数预警、设…

机器学习深度学习——自注意力和位置编码(数学推导+代码实现)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——注意力分数&#xff08;详细数学推导代码实现&#xff09; &#x1f4da;订阅专栏&#xff1a;机器学习…

Cat(2):下载与安装

1 github源码下载 要安装CAT&#xff0c;首先需要从github上下载最新版本的源码。 官方给出的建议如下&#xff1a; 注意cat的3.0代码分支更新都发布在master上&#xff0c;包括最新文档也都是这个分支注意文档请用最新master里面的代码文档作为标准&#xff0c;一些开源网站…

MySQL— 基础语法大全及操作演示!!!(上)

MySQL—— 基础语法大全及操作演示&#xff08;上&#xff09; 一、MySQL概述1.1 、数据库相关概念1.1.1 MySQL启动和停止 1.2 、MySQL 客户端连接1.3 、数据模型 二、SQL2.1、SQL通用语法2.2、SQL分类2.3、DDL2.3.1 DDL — 数据库操作2.3.1 DDL — 表操作 2.4、DML2.4.1 DML—…

等保案例 5

用户简介 四川省人民代表大会常务委员会&#xff0c;作为省人民代表大会地常设机关&#xff0c;随着政府部门信息化程度地提高&#xff0c;对信息系统地依赖程度越来越高&#xff0c;同时由于网络安全形势日益严峻、新型攻击层出不穷&#xff0c;单位信息化所面临地各种风险也…

途乐证券-宁德时代发力超充赛道,高压快充概念强势拉升,泰永长征涨停

高压快充概念17日盘中强势拉升&#xff0c;到发稿&#xff0c;泰永长征涨停&#xff0c;万祥科技涨超9%&#xff0c;英可瑞涨逾8%&#xff0c;迦南智能涨超4%。 消息面上&#xff0c;8月16日&#xff0c;宁德时代举行线下新品发布会&#xff0c;正式发布全球首款磷酸铁锂4C超充…