区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测

目录

    • 区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测。基于分位数回归的门控循环单元QRGRU的时间序列区间预测,多输入单输出模型 (Matlab完整程序和数据)
(主要应用于风速,负荷,功率)(Matlab完整程序和数据)
运行环境matlab2020及以上,输入多个特征,输出单个变量。
excel数据,方便学习和替换数据。

模型描述

分位数回归是简单的回归,就像普通的最小二乘法一样,但不是最小化平方误差的总和,而是最小化从所选分位数切点产生的绝对误差之和。如果 q=0.50(中位数),那么分位数回归会出现一个特殊情况 - 最小绝对误差(因为中位数是中心分位数)。我们可以通过调整超参数 q,选择一个适合平衡特定于需要解决问题的误报和漏报的阈值。GRU 有两个有两个门,即一个重置门(reset gate)和一个更新门(update gate)。从直观上来说,重置门决定了如何将新的输入信息与前面的记忆相结合,更新门定义了前面记忆保存到当前时间步的量。如果我们将重置门设置为 1,更新门设置为 0,那么我们将再次获得标准 RNN 模型。

程序设计

  • 完整程序和数据获取方式(资源处下载):MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测
% gru
layers = [ ...sequenceInputLayer(inputSize,'name','input')   %输入层设置gruLayer(numhidden_units1,'Outputmode','sequence','name','hidden1') dropoutLayer(0.3,'name','dropout_1')gruLayer(numhidden_units2,'Outputmode','last','name','hidden2') dropoutLayer(0.3,'name','drdiopout_2')fullyConnectedLayer(outputSize,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %quanRegressionLayer('out',i)];
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% 参数设定
opts = trainingOptions('adam', ...'MaxEpochs',10, ...'GradientThreshold',1,...'ExecutionEnvironment','cpu',...'InitialLearnRate',0.001, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',2, ...   %2个epoch后学习率更新'LearnRateDropFactor',0.5, ...'Shuffle','once',...  % 时间序列长度'SequenceLength',1,...'MiniBatchSize',24,...'Verbose',0);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%
% 网络训练
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
y = Test.demand;
x = Test{:,3:end};
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% 归一化
[xnorm,xopt] = mapminmax(x',0,1);
xnorm = mat2cell(xnorm,size(xnorm,1),ones(1,size(xnorm,2)));
[ynorm,yopt] = mapminmax(y',0,1);
ynorm = ynorm';% 平滑层flattenLayer('Name','flatten')% GRU特征学习gruLayer(50,'Name','gru1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% GRU输出gruLayer(NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130447132

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340
[3] https://blog.csdn.net/kjm13182345320/article/details/127380096

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39833.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[GitOps]微服务版本控制:使用ArgoCD 部署Grafana Loki

背景介绍 请回答:你们是如何保证线上部署的服务,从服务版本到参数配置,都是和测试通过的版本是一致的呢? 本文将介绍GitOps的基本原理以及ArgoCD的使用:ArgoCD部署Grafana Loki 到k8s集群。 本文项目地址&#xff1…

Nginx 解决api跨域问题

环境: nginx 1.22.1 宝塔8.0 php lavarel 在nginx里加入下面的设置 #这里填*就是任何域名都允许跨域add_header Access-Control-Allow-Origin "*";#CORS请求默认不发送Cookie和HTTP认证信息。但是如果要把Cookie发到服务器,要服务器同意&#xff0c…

538页21万字数字政府智慧政务大数据云平台项目建设方案WORD

导读:原文《538页21万字数字政府智慧政务大数据云平台项目建设方案WORD》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 根据业务的不同属性&#xff0c…

深入解析 Axios Blob 的使用方法及技巧

在 Web 开发中,处理文件传输是一个常见的需求。Blob(二进制对象)是一种表示二进制数据的方式,常用于处理文件和多媒体数据。本文将介绍如何使用 Axios 和 Blob 来处理文件传输。 Axios Blob 概念 在开始之前,让我们先…

IC流程中 DFT 学习笔记(1)

引言 DFT是ASIC芯片设计流程中不可或缺的环节。其主要目的是在芯片前端设计验证完成后插入一些诸如寄存器链等可供测试的逻辑,算是IC后端设计的范畴。主要是在ASIC芯片流片完成后,通过这些已插入的逻辑,检测流片得到的芯片的制造质量。检测一…

Go framework-Beego

一、Beego Beego用于在Go中快速开发企业应用程序,包括RESTful API、web应用程序和后端服务。 Beego 源码地址 Beego 官方站点 Beego 官方说明 Beego的特性 RESTful支持MVC架构模块化自动API文档注释路由命名空间开发工具集合Full stack for Web & API Bee…

Java并发编程(四)线程同步 中 [AQS/Lock]

概述 Java中可以通过加锁,来保证多个线程访问某一个公共资源时,资源的访问安全性。Java提出了两种方式来加锁 第一种是我们上文提到的通过关键字synchronized加锁,synchronized底层托管给JVM执行的,并且在java 1.6 以后做了很多…

一百五十二、Kettle——Kettle9.3.0本地连接Hive3.1.2(踩坑,亲测有效,附截图)

一、目的 由于先前使用的kettle8.2版本在Linux上安装后&#xff0c;创建共享资源库点击connect时页面为空&#xff0c;后来采用如下方法&#xff0c;在/opt/install/data-integration/ui/menubar.xul文件里添加如下代码 <menuitem id"file-openZiyuanku" label&…

音视频学习-音视频基础

文章目录 一、 音视频录制原理二、音视频播放原理三、图像基础概念1.像素2.分辨率3.位深4.帧率5.码率6.Stride跨距 四、RGB、YUV1.RGB2.YUV1. 4:4:4格式2. 4:2:2格式3. 4:2:0格式4. 4:2:0数据格式对比 3.RGB和YUV的转换4.YUV Stride对齐问题 五、视频的主要概念1.基本概念2.I P…

数据结构:栈和队列(超详细)

目录 ​编辑 栈&#xff1a; 栈的概念及结构&#xff1a; 栈的实现&#xff1a; 队列&#xff1a; 队列的概念及结构&#xff1a; 队列的实现&#xff1a; 扩展知识&#xff1a; 以上就是个人学习线性表的个人见解和学习的解析&#xff0c;欢迎各位大佬在评论区探讨&#…

基于YOLOv8模型和Caltech数据集的行人检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要 基于YOLOv8模型和Caltech数据集的行人检测系统可用于日常生活中检测与定位行人&#xff0c;利用深度学习算法可实现图片、视频、摄像头等方式的行人目标检测&#xff0c;另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集…

频繁full gc 调参

Error message from spark is:java.lang.Exception: application_1678793738534_17900289 Driver Disassociated [akka.tcp://sparkDriverClient11.71.243.117:37931] <- [akka.tcp://sparkYarnSQLAM9.10.130.149:38513] disassociated! 日志里频繁full gc &#xff0c;可以…

Python Opencv实践 - 图像金字塔

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) print(img.shape)#图像上采样 #cv.pyrUp(src, dstNone, dstsizeNone, borderTypeNone) #参考资料&#xff1a;https://blo…

AD域控制器将辅域控制器角色提升为主域控制器

背景 域控服务器迁移&#xff0c;已将新机器添加为该域的辅域控制器。 主域控制器&#xff1a;test-dc-01 辅域控制器&#xff1a;test-dc-02 需求将主辅域的角色进行互换&#xff0c;test-dc-01更换为辅域&#xff0c;test-dc-02更换为主域。 操作步骤 方法1 命令行修改AD域…

Datawhale Django入门组队学习Task02

Task02 首先启动虚拟环境&#xff08;复习一下之前的&#xff09; 先退出conda的&#xff0c; conda deactivate然后cd到我的venv下面 &#xff0c;然后cd 到 scripts&#xff0c;再 activate &#xff08;powershell里面&#xff09; 创建admin管理员 首先cd到项目路径下&a…

mySQL 视图 VIEW

简化版的创建视图 create view 视图名 as select col ...coln from 表create view 视图名&#xff08;依次别名&#xff09; as select col ...coln from 表create view 视图名 as select col “别名1”&#xff0c;。。。col "别名n" from 表show tab…

Flink的常用算子以及实例

1.map 特性&#xff1a;接收一个数据&#xff0c;经过处理之后&#xff0c;就返回一个数据 1.1. 源码分析 我们来看看map的源码 map需要接收一个MapFunction<T,R>的对象&#xff0c;其中泛型T表示传入的数据类型&#xff0c;R表示经过处理之后输出的数据类型我们继续往…

计算机提示vcruntime140_1.dll丢失的解决方法

在使用Windows操作系统时&#xff0c;有时候我们可能会遇到一些应用程序无法正常运行的问题&#xff0c;出现错误提示&#xff0c;其中之一可能就是缺少或损坏了vcruntime140_1.dll文件。在遇到这种情况时&#xff0c;我们可以尝试修复vcruntime140_1.dll文件来解决问题。 先科…

期权定价模型系列【5】—ETF期权数据

1.前言 对期权定价模型进行研究时&#xff0c;往往需要匹配的实际数据&#xff0c;国内上市时间超过两年、主流的ETF期权包括华夏上证50ETF期权、沪深300ETF期权等&#xff0c;其对应的标的资产分别为华夏上证50ETF、华泰柏瑞沪深300ETF、嘉实沪深300ETF。 2.上证50ETF期权合约…