【LangChain】P1 LangChain 应用程序的核心构建模块 LLMChain 以及其三大部分

LangChain 的核心构建模块 LLMChain

  • LangChain 应用程序的核心构建模块
    • 语言模型 - LLMs
    • 提示模板 - Prompt templates
    • 输出解析器 - Output Parsers
  • LLMChain 组合

在这里插入图片描述

LangChain 应用程序的核心构建模块

LangChain 应用程序的核心构建模块 LLMChain 由三部分组成:

  • 语言模型 - LLMs: 语言模型是这里的核心推理引擎。为了使用 LangChain,您需要了解不同类型的语言模型以及如何使用它们。
  • 提示模板 - Prompt templates: 它为语言模型提供指令。它控制着语言模型的输出,因此了解如何构建提示和不同的提示策略至关重要。
  • 输出解析器 - Output Parsers: 它们将 LLM 的原始响应翻译成更易于使用的格式,从而方便下游使用输出。

本部分我将单独介绍这三个组件,然后介绍将所有组件结合在一起的 LLMChain:


语言模型 - LLMs

在 LangChain 中,存在两种语言模型:

  • LLMs: 将字符串作为输入并返回字符串的语言模型;
    LLMs 的输入/输出是简单易懂的字符串。
  • ChatModels: 聊天模型,将信息列表作为输入并返回信息的语言模型;
    ChatModels 的输入是一个 ChatMessage 列表,输出是一个 ChatMessage。ChatMessage 有两个必备组件:
    • content(内容): 这是信息的内容。
    • role(角色): 这是来自该 ChatMessage 的实体的角色。

LangChain 为这两种语言模型提供了一个标准接口,该标准接口有两个方法:

  • predict: 接收一个字符串,返回一个字符串;明显是 LLMs 的方法。
  • predict_messages: 接收信息列表,返回信息;明显是 ChatModels 的方法。

LangChain 提供了多个对象,可以轻松区分不同的角色:

  • HumanMessage(人类信息): 来自人类/用户的 ChatMessage。
  • AIMessage(人工智能助手信息): 来自人工智能/助手的聊天信息。
  • SystemMessage(系统信息): 系统消息来自系统的聊天信息。
  • FunctionMessage(功能消息): 来自函数调用的聊天信息。

初始化 llm 与 chat_model

from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAIllm = OpenAI(openai_api_key="xxx")
chat_model = ChatOpenAI(openai_api_key="xxx")
# 如果需要 API Key 可在博文下方留言

使用 predict 方法运行字符串输入:

text = "What would be a good company name for a company that makes colorful socks?"print(llm.predict(text))
print(chat_model.predict(text))

使用 predict_message 方法运行信息列表输入:

from langchain.schema import HumanMessagetext = "What would be a good company name for a company that makes colorful socks?"
messages = [HumanMessage(content=text)]print(llm.predict_messages(messages))
print(chat_model.predict_messages(messages))

提示模板 - Prompt templates

  • 提示模板是什么?

    在大语言模型中,开发人员通常不会直接将用户输入传递给语言模型,而是将用户输入添加到一个较大的文本段中,该文本段称为 “提示模板”(Prompt Template)。

  • 提示模板的目的?

    这样做的目的是为了为特定任务提供更多的上下文和指导,从而引导语言模型生成更有针对性的输出。

    这种方法有助于引导语言模型的生成,使其更加专注于特定任务,同时也可以控制生成的文本的风格和内容。通过提供上下文信息,提示模板可以在不同应用场景中引导语言模型的生成,以适应不同的用户需求。

  • 字符串提示模板案例:

    from langchain.prompts import PromptTemplateprompt = PromptTemplate.from_template("What is a good name for a company that makes {product}?")
    prompt.format(product="colorful socks")
    
  • 信息列表提示模板案例:

    from langchain.prompts.chat import (ChatPromptTemplate,SystemMessagePromptTemplate,HumanMessagePromptTemplate,
    )template = "You are a helpful assistant that translates {input_language} to {output_language}."
    system_message_prompt = SystemMessagePromptTemplate.from_template(template)
    human_template = "{text}"
    human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])chat_prompt.format_messages(input_language="English", output_language="French", text="I love programming.")
    

输出解析器 - Output Parsers

  • 输出解析器的作用?

    输出解析器可将 LLM 的原始输出转换成下游可使用的格式。

  • 输出解析器的类型?

    • 将 LLM 中的文本转换为结构化信息(如 JSON);
    • 将聊天信息转换为字符串;
    • 将调用返回的除信息外的额外信息(如 OpenAI 函数调用)转换为字符串。
    • 等;
  • 案例:

    下案例为编写自己的输出解析器 – 将逗号分隔的列表转换为列表:

    from langchain.schema import BaseOutputParserclass CommaSeparatedListOutputParser(BaseOutputParser):"""Parse the output of an LLM call to a comma-separated list."""def parse(self, text: str):"""Parse the output of an LLM call."""return text.strip().split(", ")CommaSeparatedListOutputParser().parse("hi, bye")
    # >> ['hi', 'bye']
    

LLMChain 组合

现在,我们将所有这些组合成一个链。
该链将接收输入变量,将其传递给提示模板以创建提示,将提示传递给 LLM,然后将输出传递给输出解析器。
这是一种捆绑模块化逻辑的便捷方法。请看测试案例:

from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (ChatPromptTemplate,SystemMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.chains import LLMChain
from langchain.schema import BaseOutputParser# 输出解析器部分
class CommaSeparatedListOutputParser(BaseOutputParser):"""Parse the output of an LLM call to a comma-separated list."""def parse(self, text: str):"""Parse the output of an LLM call."""return text.strip().split(", ")# 信息列表提示模板案例
template = """You are a helpful assistant who generates comma separated lists.
A user will pass in a category, and you should generate 5 objects in that category in a comma separated list.
ONLY return a comma separated list, and nothing more."""
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
chain = LLMChain(llm=ChatOpenAI(),prompt=chat_prompt,output_parser=CommaSeparatedListOutputParser()
)
chain.run("colors")
# >> ['red', 'blue', 'green', 'yellow', 'orange']

上一篇博文:【LangChain】P0 LangChain 是什么与准备工作
下一篇博文:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/39777.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电脑键盘打不了字按哪个键恢复?最新分享!

“有没有朋友知道电脑键盘为什么会莫名其妙就打不了字?明明用得好好的,突然就打不了字了,真的让人很迷惑!有什么方法可以解决吗?” 电脑键盘为我们的办公提供了很大的方便,我们可以利用键盘输入我们需要的文…

安防监控视频云存储平台EasyCVRH.265转码功能更新:新增分辨率配置

安防视频集中存储EasyCVR视频监控综合管理平台可以根据不同的场景需求,让平台在内网、专网、VPN、广域网、互联网等各种环境下进行音视频的采集、接入与多端分发。在视频能力上,视频云存储平台EasyCVR可实现视频实时直播、云端录像、视频云存储、视频存储…

Python文件操作与输入输出:从基础到高级应用

文章目录 🍀引言🍀文件操作基础🍀上下文管理器与文件自动关闭🍀文件的迭代与逐行读取🍀文件的其他常见操作🍀输入输出基础🍀 文件输入输出🍀格式化输出🍀高级文件操作&am…

【BASH】回顾与知识点梳理(二十七)

【BASH】回顾与知识点梳理 二十七 二十七. 磁盘配额(Quota)27.1 磁盘配额 (Quota) 的应用与实作什么是 QuotaQuota 的一般用途Quota 的使用限制Quota 的规范设定项目 27.2 一个 XFS 文件系统的 Quota 实作范例实作 Quota 流程:设定账号实作 Quota 流程-1&#xff1a…

jenkins gitlab 安装

目录 一 准备安装环境 二 安装gitlab软件 三 配置gitlab 四 重新加载配置启动gitlab 五 修改密码 五 创建用户组 一 准备安装环境 sudo yum update sudo yum install -y curl policycoreutils-python openssh-server安装 Postfix 邮件服务器,以便 Git…

qt事件系统源码-----定时器

qt定时器的使用一般有以下几种方式: 1、直接使用QTimer对象,绑定定时器的timeout信号; 2、使用QTimer的静态方法singleshot方法,产生一个一次性的定时事件 3、在QObject子类中,调用startTimer方法,产生定…

矢量绘图UI设计软件Sketch mac中文版软件说明

Sketch mac是一款适用于 UI/UX 设计、网页设计、图标制作等领域的矢量绘图软件。 Sketch mac软件特点 1. 简单易用的界面设计:Sketch 的用户界面简洁明了,使得用户可以轻松上手操作,不需要复杂的学习过程。 2. 强大的矢量绘图功能&#xff1a…

flinksql实时统计程序背压延迟优化

问题: flinkcdcflinksql做实时读取sls日志和实时统计业务指标,今天发现程序背压了,业务延迟了6个小时。解决办法: 1、资源优化 作业并发大时:在作业的高级配置的资源配置中,增加JobManager的资源&#xf…

香港服务器三网直连内地线路什么意思?好用吗?

​  三网直连内地是指香港服务器可以直接连接中国内地的电信、联通和移动三大运营商网络,避免了中间网络干线的支持。这样可以实现直接、快速、稳定的网络访问,提高用户对网络访问的效率,减少网络访问问题和拥堵的现象。 香港服务器直连内地…

XSS 跨站脚本攻击

XSS(DOM) XSS 又称CSS(Cross Site Scripting)或跨站脚本攻击,攻击者在网页中插入由JavaScript编写的恶意代码,当用户浏览被嵌入恶意代码的网页时,恶意代码将会在用户的浏览器上执行。 XSS攻击可分为三种:分别为反射型(Reflected…

线程|线程的使用、四种实现方式

1.线程的实现方式 1.用户级线程 开销小,用户空间就可以创建多个。缺点是:内核无法感知用户级多个线程的存在,把其当作只有一个线程,所以只会提供一个处理器。 2.内核级线程 相对于用户级开销稍微大一点,可以利用多…

Unity C# 之 Azure 微软SSML语音合成TTS流式获取音频数据以及表情嘴型 Animation 的简单整理

Unity C# 之 Azure 微软SSML语音合成TTS流式获取音频数据以及表情嘴型 Animation 的简单整理 目录 Unity C# 之 Azure 微软SSML语音合成TTS流式获取音频数据以及表情嘴型 Animation 的简单整理 一、简单介绍 二、实现原理 三、注意事项 四、实现步骤 五、关键代码 一、简…

01- vdom 和模板编译源码

组件渲染的过程 template --> ast --> render --> vDom --> 真实的Dom --> 页面 Runtime-Compiler和Runtime-Only的区别 - 简书 编译步骤 模板编译是Vue中比较核心的一部分。关于 Vue 编译原理这块的整体逻辑主要分三个部分,也可以说是分三步&am…

《vue3实战》运用radio单选按钮或Checkbox复选框实现单选多选的试卷制作

文章目录 目录 系列文章目录 1.《Vue3实战》使用axios获取文件数据以及走马灯Element plus的运用 2.《Vue3实战》用路由实现跳转登录、退出登录以及路由全局守护 3.《vue3实战》运用Checkbox复选框实现单选多选的试卷展现(本文) 文章目录 前言 radio是什…

Java中List排序的4种方法

开发过程中经常会遇到读取文件内容的情况,需要判断文件是否为文本文件,及文件编码格式,防止无法读取内容或乱码出现情况。 我们可以通过 java.io.File 类包找出文件是目录还是常规文件。java.io.File 类包含两种方法,它们分别是&…

TCP服务器—实现数据通信

目录 前言 1.接口介绍 2.编写服务器 3.编写客户端 4.编译链接 5.测试 6.总结 前言 今天我们要介绍的是使用TCP协议实现数据通信,相比于之前写的UDP服务器实现数据信,在主体逻辑上并没有差别。客户端向服务器发送信息,服务器接受信息并回…

JavaEE初阶:多线程 - Thread 类的基本用法

上次我们了解了多线程的五种创建方法,今天来学习Thread的基本用法。 目录 run和start Thread常见的构造方法 Thread的几个常见属性 后台线程 是否存活 线程终止 1.使用标志位 2.使用Thread自带的标志 等待线程 run和start 首先需要理解Thread的run和star…

JavaWeb-Listener监听器

目录 监听器Listener 1.功能 2.监听器分类 3.监听器的配置 4.ServletContext监听 5.HttpSession监听 6.ServletRequest监听 监听器Listener 1.功能 用于监听域对象ServletContext、HttpSession和ServletRequest的创建,与销毁事件监听一个对象的事件&#x…

Python源码05:使用Pyecharts画词云图图

**Pyecharts是一个用于生成 Echarts 图表的 Python 库。Echarts 是一个基于 JavaScript 的数据可视化库,提供了丰富的图表类型和交互功能。**通过 Pyecharts,你可以使用 Python 代码生成各种类型的 Echarts 图表,例如折线图、柱状图、饼图、散…

Glide 的超时控制相关处理

作者:newki 前言 Glide 相信大家都不陌生,各种源码分析,使用介绍大家应该都是烂熟于心。但是设置 Glide 的超时问题大家遇到过没有。 我遇到了,并且掉坑里了,情况是这样的。 调用接口从网络拉取用户头像&#xff0c…