数据库课程设计结论_结论

数据库课程设计结论

When writing about learning or breaking into data science, I always advise building projects.

在撰写有关学习或涉足数据科学的文章时,我总是建议构建项目。

It is the best way to learn as well as showcase your skills.

这是学习和展示技能的最佳方式。

But I often get messages from readers asking, “How exactly do I come up with ideas for my projects?”

但是我经常从读者那里收到消息,问我:“我究竟如何提出我的项目构想?”

Any seasoned entrepreneur or engineer will tell you they have too many ideas. But it’s not always easy when you’re starting out.

任何经验丰富的企业家或工程师都会告诉您他们有太多想法。 但是,刚开始时并不总是那么容易。

So here’s a few ways I’ve personally come up with ideas.

因此,这是我个人提出想法的几种方法。

参加社交活动并与人们交谈 (Attend networking events and talk to people)

Most people are surprisingly willing to share their own ideas. You just have to ask.

令人惊讶的是,大多数人都愿意分享自己的想法。 您只需要问。

My default question at networking events is, “What are you working on or trying to solve?”

我在网络活动中的默认问题是: “您在做什么或试图解决什么?”

Last week at a virtual event, every single non-technical person I talked to shared a use-case for ML that they wanted to build.

上周在一次虚拟活动中,我交谈过的每一个非技术人员都共享了他们想要构建的ML用例。

Now don’t steal anyone’s idea. But if you’re already dedicating hours to learn data science, consider helping someone for free. You’ll get experience to put on your resume and a connection that may be useful in your career.

现在,不要窃取任何人的想法。 但是,如果您已经投入了数小时来学习数据科学,请考虑免费帮助某人。 您将获得经验丰富的履历表以及对您的职业有用的联系。

Successful people are happy to share ideas. They understand there are an infinite number of problems to solve in the world, and sharing isn’t a zero-sum game.

成功人士乐于分享想法。 他们知道世界上有无数的问题要解决,共享不是零和游戏。

利用您的兴趣爱好产生想法 (Use your hobbies and interests to generate ideas)

Many great ideas have come from merging expertise across different domains.

来自不同领域的专业知识融合产生了许多伟大的想法。

For example, Geoffrey Hinton, the inventor of neural networks, had a background in psychology from which he drew many early ideas about artificial intelligence.

例如, 神经网络的发明者杰弗里·欣顿 ( Geoffrey Hinton)具有心理学背景,他从中汲取了许多关于人工智能的早期想法。

How can you apply this to your own interests?

您如何将其应用于自己的利益?

Personally, I love my dog, badminton, and cooking. I’m also aware of the general topics under the machine learning umbrella. So I’ll try to match a type of ML with each of my hobbies to generate an idea.

就个人而言,我爱我的狗,羽毛球和烹饪。 我也知道机器学习框架下的一般主题。 因此,我将尝试将ML类型与我的每个爱好进行匹配,以产生一个想法。

  1. My dog — Categorize audio recordings of my dog’s different barks, ruffs and growls with machine learning.

    我的狗—通过机器学习对狗的不同吠、,和咆哮的音频进行分类。
  2. Badminton —Detect if a video of someone swinging a badminton racket has proper form, using machine learning.

    羽毛球-使用机器学习来检测某人挥舞羽毛球拍的视频是否格式正确。
  3. Cooking — Classify images of food, by country.

    烹饪-按国家分类食物的图像。

These could all be very interesting projects, if you dug deep into them.

如果您深入研究这些项目,它们可能都是非常有趣的项目。

So ask yourself, what are you interested in? Could data science help you do it better, or extract interesting incites?

所以问问自己,您对什么感兴趣? 数据科学可以帮助您做得更好,还是提取有趣的内容?

解决日常工作中的问题 (Solve problems in your day job)

Your current job may not be in data science. But that doesn’t mean there aren’t interesting data science problems to solve.

您当前的工作可能不是数据科学。 但这并不意味着没有有趣的数据科学问题可以解决。

Every company has manual operational tasks begging to be automated. If you don’t have them yourself, your colleagues in marketing or customer service might. Can you help them?

每个公司都要求将手动操作任务自动化。 如果您自己没有,那么您在市场营销或客户服务方面的同事可能会。 你能帮他们吗?

Consider if automation, decision trees, or data visualization could help someone in your organization.

考虑自动化,决策树或数据可视化是否可以帮助您组织中的某人。

If this is outside your normal scope, you might have to work on it during your own time. But that’s a small price to pay if it adds value and gives you experience.

如果这超出了您的正常范围,则可能需要在您自己的时间内进行处理。 但是,如果它增加了价值并为您提供了经验,那是一个很小的代价。

Back when I managed business intelligence for an e-commerce company, I wanted to break into software engineering. So I started writing code on weekends to scrape competitor websites selling similar products, and auto generated reports on our overpriced products. Then I sent the reports to our buying department so they could lower prices — This project helped me land my next job.

当我为一家电子商务公司管理商业智能时,我想涉足软件工程。 因此,我开始在周末编写代码,以刮擦销售类似产品的竞争对手网站,并自动生成有关我们定价过高的产品的报告。 然后,我将报告发送给我们的采购部门,以便他们降低价格-这个项目帮助我找到了下一份工作。

Go deep into your current job and you’re almost guaranteed to find a project that data science can be applied to.

深入研究当前的工作,几乎可以保证您找到一个可以应用数据科学的项目。

熟悉数据科学工具包 (Get familiar with the data science toolkit)

Even if you don’t know how every model works, it’s valuable to know the general topics under the ML and data science umbrellas.

即使您不了解每种模型的工作原理,了解ML和数据科学伞下的一般主题也很有价值。

This gives you the ability to fit these models onto the world around you.

这使您能够将这些模型拟合到您周围的世界中。

For example, I know that NLP encompasses “text classification”, “information retrieval” and “question and answer systems”.

例如,我知道NLP包含“文本分类”,“信息检索”和“问答系统”。

So when I have a dataset in mind (ie: Reddit threads), it’s easy to think of potential applications and generate preliminary ideas.

因此,当我想到一个数据集(即Reddit线程)时,很容易想到潜在的应用程序并产生初步的想法。

Once you have the high-level toolkit, coming up with ideas becomes easier across the board.

有了高级工具包后,全面提出想法就变得容易了。

解决您自己的数据科学问题 (Solve your own data science problems)

What problems do you have in your search for a data science job? Could machine learning assist you?

您在寻找数据科学工作时遇到什么问题? 机器学习可以帮助您吗?

Maybe you could scrape job boards, classify whether a job is data science related, and perform analytics on the job requirements.

也许您可以刮擦工作板,对工作是否与数据科学相关进行分类,并根据工作要求执行分析。

That would be an awesome project!

那将是一个了不起的项目!

You could also add competitive analytics showing hiring differences between companies, and show it to the company you want to work for.

您还可以添加竞争性分析,以显示公司之间的雇用差异,并将其显示给您想要工作的公司。

As someone who hires engineers, I’d be fascinated to see the results of a project like this in someone’s portfolio.

作为雇用工程师的人,我会着迷于某人的投资组合中看到这样的项目的结果。

通过数据科学家的眼镜看世界 (Look at the world through data scientist glasses)

Ask yourself what can be analyzed, tested, or automated as you walk around in your daily life.

问自己一遍,日常生活中可以分析,测试或自动化的内容。

Watering houseplants: could you analyze soil moisture to optimize plant growth?

给室内植物浇水:您能分析土壤湿度以优化植物生长吗?

Shopping: could the department store detect theft with machine learning?

购物:百货商店可以通过机器学习检测到盗窃吗?

Cooking: could a photo of the inside of your fridge detect what ingredients need to be replenished?

烹饪:冰箱内部的照片可以检测需要补充哪些成分吗?

Then take the smallest component of the project, and actually try to build it.

然后,使用项目的最小组件,并尝试进行构建。

There are an unlimited number of ideas to stumble across. You just need the right mindset to see them.

有不计其数的想法可以偶然发现。 您只需要正确的思维方式就能看到它们。

结论 (Conclusion)

Coming up with ideas when you’re starting out is hard. I know because I used to be there.

刚开始时想出主意很难。 我知道,因为我曾经在那里。

But understand — all great ideas come from real experiences. There are no ideas in a vacuum.

但是请理解-所有很棒的想法都来自真实的经验。 真空中没有想法

That’s why it’s important to put down your laptop, get outside and talk to people.

这就是为什么放下笔记本电脑,到户外与人交谈很重要的原因。

Seasoned entrepreneurs have too many ideas because they’re already working on lots of projects, and cross-pollinating ideas between different domains.

经验丰富的企业家有太多的想法,因为他们已经在从事许多项目,并且在不同领域之间相互授粉。

Eventually, you’ll also get to the point where you have too many ideas. When you get there, share some!

最终,您还会有太多想法。 当您到达那里时,分享一些!

翻译自: https://towardsdatascience.com/a-guide-to-getting-data-science-projects-ideas-9ba5aaeafa61

数据库课程设计结论

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/392524.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mongo基本使用方法

mongo与关系型数据库的概念对比,区分大小写,_id为主键。 1.数据库操作 >show dbs #查看所有数据库 >use dbname #创建和切换数据库(如果dbname存在则切换到该数据库,不存在则创建并切换到该数据库;新创建的…

leetcode 62. 不同路径(dp)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。 问总共有多少条不同的路径? 例如&…

第一名数据科学工作冠状病毒医生

背景 (Background) 3 years ago, I had just finished medical school and started working full-time as a doctor in the UK’s National Health Service (NHS). Now, I work full-time as a data scientist at dunnhumby, writing code for “Big Data” analytics with Pyt…

mysql时间区间效率_对于sql中使用to_timestamp判断时间区间和不使用的效率对比及结论...

关于日期函数TO_TIMESTAMP拓展:date类型是Oracle常用的日期型变量,时间间隔是秒。两个日期型相减得到是两个时间的间隔,注意单位是“天”。timestamp是DATE类型的扩展,可以精确到小数秒(fractional_seconds_precision)&#xff0c…

ajax 赋值return

ajax 获得结果后赋值无法成功, function grades(num){ var name"";   $.ajax({    type:"get",     url:"",     async:true,     success:function(result){     var grades result.grades;     …

JavaScript(ES6)传播算子和rest参数简介

by Joanna Gaudyn乔安娜高登(Joanna Gaudyn) JavaScript(ES6)传播算子和rest参数简介 (An intro to the spread operator and rest parameter in JavaScript (ES6)) 扩展运算符和rest参数都被写为三个连续的点(…)。 他们还有其他共同点吗? (Both the spread opera…

python爬虫消费者与生产者_Condition版生产者与消费者模式

概述:在人工智能来临的今天,数据显得格外重要。在互联网的浩瀚大海洋中,隐藏着无穷的数据和信息。因此学习网络爬虫是在今天立足的一项必备技能。本路线专门针对想要从事Python网络爬虫的同学而准备的,并且是严格按照企业的标准定…

【Python包】安装teradatasql提示找不到pycryptodome模块错误(pycrypto,pycryptodome和crypto加密库)...

1.问题描述 安装teradatasql时,出现错误Could not find a version that satisfies the requirement pycryptodome,具体如下: 2.解决方法 查看Python第三方库目录$PYTHON_HOME/lib/python3.6/site-packages目录下没有pycryptodome目录&#xf…

leetcode 860. 柠檬水找零(贪心算法)

在柠檬水摊上,每一杯柠檬水的售价为 5 美元。 顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。 每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零&#xff0…

简述yolo1-yolo3_使用YOLO框架进行对象检测的综合指南-第二部分

简述yolo1-yolo3In the last part, we understood what YOLO is and how it works. In this section, let us understand how to apply it using pre-trained weights and obtaining the results. This article is greatly inspired by Andrew Ng’s Deep Learning Specializat…

ubuntu配置JDK环境

>>>cd /usr/lib >>>mkdir java >>>cd java ###这里的参数表示接收他们的协议 >>>wget --no-check-certificate --no-cookies --header "Cookie: oraclelicenseaccept-securebackup-cookie" http://download.oracle.com/otn-pub/…

java cxf 调用wcf接口_JAVA 调用 WCF 服务流程

1. 将 WCF 服务发布到 Windows 服务(或者 IIS)此步骤的目的是为 WCF 服务搭建服务器,从而使服务相关的 Web Services 可以被 JAVA 客户端程序调用,具体步骤参考如下:(1) 发布到 Windows 服务(2) 发布到 IIS注:如果是将 WCF 服务…

react第三方组件库_如何自定义您的第三方React组件

react第三方组件库by Jacob Goh雅各布高 如何自定义您的第三方React组件 (How to customize your third party React components) Component libraries make our lives easier.组件库使我们的生活更轻松。 But as developers, you might often find yourselves in situations…

gcp devops_将GCP AI平台笔记本用作可重现的数据科学环境

gcp devopsBy: Edward Krueger and Douglas Franklin.作者: 爱德华克鲁格 ( Edward Krueger)和道格拉斯富兰克林 ( Douglas Franklin) 。 In this article, we will cover how to set up a cloud computing instance to run Python with or without Jupyter Notebo…

迅为工业级iMX6Q开发板全新升级兼容PLUS版本|四核商业级|工业级|双核商业级...

软硬件全面升级 1. 新增Yocto项目的支持 增加opencv等软件功能 2. 新近推出i.MX6增强版本核心板(PLUS) -性能更强 四种核心板全兼容 四核商业级2G/16G;双核商业级1G/8G ;四核工业级1G/8G ;四核增强版(PLUS) 3. 豪华配…

flume 中的 hdfs sink round 和roll

http://blog.csdn.net/kntao/article/details/49278239 http://flume.apache.org/FlumeUserGuide.html#exec-source 默认的是是SequenceFile所以数据存在hdfs上通过命令查看的时候会是乱码,如果此时需要修改filetype和writeFormat来修改 hdfs.fileTypeSequenceFileFile format:…

leetcode 649. Dota2 参议院(贪心算法)

Dota2 的世界里有两个阵营:Radiant(天辉)和 Dire(夜魇) Dota2 参议院由来自两派的参议员组成。现在参议院希望对一个 Dota2 游戏里的改变作出决定。他们以一个基于轮为过程的投票进行。在每一轮中,每一位参议员都可以行使两项权利中的一项: …

电力现货市场现货需求_现货与情绪:现货铜市场中的自然语言处理与情绪评分

电力现货市场现货需求Note from Towards Data Science’s editors: While we allow independent authors to publish articles in accordance with our rules and guidelines, we do not endorse each author’s contribution. You should not rely on an author’s works with…

PHP学习系列(1)——字符串处理函数(2)

6、chunk_split() 函数把字符串分割为一连串更小的部分。本函数不改变原始字符串。 语法:chunk_split(string,length,end) 参数: string——必需。规定要分割的字符串。 length——可选。一个数字,定义字符串块的长度。 end——可选。字符串值…

java做主成分分析_主成分分析PCA

PCA(Principal Component Analysis),即主成分分析,一种常用于数据降维分析的方法。要理解PCA的原理,首先需要理解矩阵变换的意义。矩阵变换,有两种意义:1,在当前坐标系下的向量,经过矩阵M变换后…