我如何预测10场英超联赛的确切结果

Is there a way to predict the outcome of any soccer game with 100% accuracy? The honest and simplest answer is…. no. Regardless of what your fantasy football friends say, there is absolutely no way to be 100% certain, but there is a proven, mathematical formula that gets really, really close! And it’s all thanks to baseball.

有没有办法以100%的准确性预测任何足球比赛的结果? 诚实和最简单的答案是……。 没有。 无论您的梦幻足球朋友怎么说,都绝对不可能百分百地确定,但是有一个经过验证的数学公式可以非常紧密地联系在一起! 这全都归功于棒球。

In the early 2000s, Bill James derived a formula that could calculate the percentage of games a baseball team “should” win by the end of the season. It was coined as the Pythagorean Win Expectation and is still used by sports analysts around the world. In order to avoid boring you with the math, all you need to know is that it uses the relationships between Runs Scored and Runs Allowed by a team to predict how many wins they should have by the end of a season.

在2000年代初期,比尔·詹姆斯(Bill James)得出了一个公式,该公式可以计算棒球队在本赛季末“应该”获胜的比赛百分比。 它被称为毕达哥拉斯式的“胜利期望”,至今仍被世界各地的体育分析人士所采用。 为了避免使您感到厌烦,您需要了解的是,它使用团队得分和跑步允许的跑步次数之间的关系来预测到赛季结束前应该获得多少胜利。

Image for post
Pythagorean Win Expectation Formula from Winston’s Mathletics
温斯顿数学的毕达哥拉斯赢取期望公式

However, baseball and soccer are 2 completely different sports. For instance, baseball is based on a 162 games season where performance is measured by wins and losses. On the other hand, soccer usually revolves around a 38 game season measured by a point system. So, how can this formula predict outcomes for soccer? Well, it can’t. At least not without tweaking it first.

但是,棒球和足球是两种完全不同的运动。 例如,棒球以162场比赛赛季为基础,其中的表现是由胜利和失败决定的。 另一方面,足球通常围绕一个得分系统衡量的38个赛季进行。 那么,这个公式如何预测足球的结果呢? 好吧,那不可能。 至少并非没有先对其进行调整。

There are thousands of academic papers online explaining all of the intricate math that goes into the process of deriving this formula and there is no way I could ever understand them. Therefore, for the sake of simplicity, we will take the following magic formula as face value:

在线上有成千上万的学术论文解释了推导此公式过程中所涉及的所有复杂数学,而且我永远无法理解它们。 因此,为简单起见,我们将以下魔术公式作为面值:

Image for post
Derivation from Statsbomb.com
源自Statsbomb.com

Does this really work? Yeah, it does a pretty good job! Not only is the math pretty simple, but with some basic Excel knowledge, one is able to do this for all 20 teams in under 20 minutes! I used this myself to predict the outcomes of the last 10 games of the English Premier League and the results were extremely encouraging! Here is how I did it:

这真的有效吗? 是的,做得很好! 数学不仅非常简单,而且具有一些基本的Excel知识,一个人就能在20分钟内为所有20个团队做到这一点! 我自己以此来预测英超联赛最近10场比赛的结果,结果令人鼓舞! 这是我的做法:

1- Get Your Data ReadySince we are going to try predict the outcome of week 38 of the Premier League, we need to gather all the relevant data up to week 37. That means Standings, Goals Scored, Goals Against, Wins, Losses, Draws, Points, etc. Thankfully, the Premier League has it all readily on their website for use. All we need to do is a simple Control+C and Control+V into our Excel sheet.

1-准备好数据因为我们要尝试预测英超联赛第38周的结果,所以我们需要收集到第37周的所有相关数据。这意味着排名,进球数,进球数,胜利,失败,抽奖,积分等。值得庆幸的是,英超联赛已经可以在其网站上方便地使用它们。 我们需要做的就是在Excel工作表中添加一个简单的Control + C和Control + V。

Image for post
Source:Author
出处:作者

2.- Calculate the Percentage of Points Predicted per TeamHere is where we get to use our magic formula! After you input it into excel on a separate column and apply, you will now have a percentage of points predicted for every team at the end of the season. All we have to do is translate it into actual points. However, the next steps are not as simple and involve some wacky assumptions.

2.-计算每个团队预测的得分百分比这是我们使用魔术公式的地方! 在将其输入到excel的单独列中并应用后,您现在将在本赛季末为每个团队预测百分比。 我们要做的就是将其转换为实际要点。 但是,下一步并不那么简单,并且涉及一些古怪的假设。

3.- How Many Possible Points Can a Team Get?In theory, if a team today won all 38 games, they would have a total of 114 points (3 points per win). However, due to the way this formula was derived, we need to assume that a win is only worth 2 points (Fun fact: This was the official measurement for wins up to 1994). Therefore, we operate under the assumption that if a team won all 38 games, they would only get 76 points.

3.-一个团队可以得到多少分? 从理论上讲,如果今天一支球队赢得了全部38场比赛,他们将总共获得114分(每次胜利3分)。 但是,由于该公式的推导方式,我们需要假设一场胜利仅值2分(有趣的事实:这是1994年之前胜利的官方衡量标准)。 因此,我们假设一个团队如果赢得了全部38场比赛,他们只会得到76分。

4.- Calculate the Final Predicted PointsSince we have our percentage of points predicted per team and the total points a team could get, we multiply them in order to get the predicted points for every team at the end of the season. However, you will notice these numbers are extremely low. That is because we are still operating under the 2 point system, which means we need to adjust it back to the 3 point system we are familiar with.

4.-计算最终的预测点数由于我们拥有每个团队的预测点数百分比和一个团队可以获得的总点数,因此我们将它们相乘,以便在赛季结束时获得每个团队的预测点数。 但是,您会注意到这些数字非常低。 那是因为我们仍在2点制下运行,这意味着我们需要将其调整回我们熟悉的3点制。

Image for post
Source: Author
资料来源:作者

5.- Getting Our Adjusted Predicted PointsThis step is not as complicated as it sounds. All we need to do here is take the current, real world points for every team and convert them into our 2 point system. All you need to do here is take the team’s real world current points and subtract the number of wins that team has. Another more intuitive way to do this is by multiplying the number of wins by 2 and adding the number of draws the team has.

5.-获得调整后的预测点此步骤并不像听起来那样复杂。 我们要做的就是为每个团队获取当前的真实积分,并将其转换为我们的2分制。 您需要做的就是获取团队的实际世界点数,然后减去团队的获胜次数。 另一种更直观的方法是将获胜次数乘以2,再加上团队的平局次数。

6.- Converting Into the 3 Point SystemOnce again, it is time to trust blindly in the math. While its derivation is not that complicated, this formula allows us to adjust the predicted points from the previous step. Now we get to see what the final expected points for every team at the end of the season and compare them to the points they currently have.

6.-转换为3点系统再次是时候该盲目地信任数学了。 尽管推导的过程并不复杂,但此公式使我们可以调整上一步的预测点。 现在我们来看看每个球队在赛季结束时的最终预期得分,并将其与当前得分进行比较。

Image for post
Derived from Statsbomb.com
源自Statsbomb.com

As you can see, our predictions differ from the actual current points by only 1 or 2 points, and some are even spot on! How you choose to interpret the information is entirely up to you.

正如您所看到的,我们的预测与实际当前点仅相差1或2个点,有些甚至还存在! 您如何选择解释信息完全取决于您。

One of the many things I did with this data was to calculate the difference between actual points and expected points and see if a team was performing better or worse than expected. This way, I could see which teams were underperforming and were expected to either win or tie their next games.

我使用此数据所做的许多事情之一是计算实际得分与预期得分之间的差异,并查看团队的表现是否好于或低于预期。 这样,我可以看到哪些球队表现不佳,并有望赢得或打败下一局。

By doing this (and using other metrics and some subjectivity), I was able to predict the outcome of 7 out of the last 10 games of the season, including Brighton’s upset and first win after losing 4 in a row, and the 1–1 tie between Tottenham and Crystal Palace!

通过这样做(并使用其他指标和某种主观性),我能够预测本赛季最后10场比赛中的7场比赛的结果,包括布莱顿的失意和连续输掉4场后的首场胜利,以及1-1热刺和水晶宫之间的纽带!

Image for post
Source: Author
资料来源:作者

翻译自: https://medium.com/illumination/how-i-predicted-the-exact-outcome-of-10-premier-league-games-9d97812f605c

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/391484.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习数据自动编码器_如何学习数据科学编码

深度学习数据自动编码器意见 (Opinion) When I first wanted to learn programming, I coded along to a 4 hour long YouTube tutorial.刚开始学习编程时,我编写了长达4个小时的YouTube教程。 “Great,” I thought after finishing the course. “I know how to …

Angular 5.0 学习2:Angular 5.0 开发环境的搭建和新建第一个ng5项目

1.安装Node.js 在开始工作之前,我们必须设置好开发环境。如果你的机器上还没有Node.js和npm,请先安装它们。去Node.js的官网,https://nodejs.org/en/,点击下载按钮,下载最新版本,直接下一步下一步安装即可&…

robot:根据条件主动判定用例失败或者通过

场景: 当用例中的断言部分需要满足特定条件时才会执行,如果不满足条件时,可以主动判定该用例为passed状态,忽略下面的断言语句。 如上图场景,当每月1号时,表中才会生成上月数据,生成后数据不会再…

图深度学习-第1部分

有关深层学习的FAU讲义 (FAU LECTURE NOTES ON DEEP LEARNING) These are the lecture notes for FAU’s YouTube Lecture “Deep Learning”. This is a full transcript of the lecture video & matching slides. We hope, you enjoy this as much as the videos. Of cou…

Git上传项目到github

2019独角兽企业重金招聘Python工程师标准>>> Git入门 个人理解git就是一个上传工具,同时兼具和svn一样的版本控制功能(此解释纯属本人个人观点) Github是什么 github就是一个分布式版本管理系统(反正我就是这么认为的…

robot:当用例失败时执行关键字(发送短信)

使用场景: 当用例失败时需要通知对应人员,则需要在Teardown中,使用关键字Run Keyword If Test Failed Send Message关键字为自定义关键字,${content}为短信内容,${msg_receiver}为短信接收者列表。 当然执行成功时需要…

项目经济规模的估算方法_估算英国退欧的经济影响

项目经济规模的估算方法On June 23 2016, the United Kingdom narrowly voted in a country-wide referendum to leave the European Union (EU). Economists at the time warned of economic losses; the Bank of England produced estimates that that GDP could be as much …

奇迹网站可视化排行榜]_外观可视化奇迹

奇迹网站可视化排行榜]When reading a visualization is what we see really what we get?阅读可视化内容时,我们真正看到的是什么? This post summarizes and accompanies our paper “Surfacing Visualization Mirages” that was presented at CHI …

机器学习 量子_量子机器学习:神经网络学习

机器学习 量子My last articles tackled Bayes nets on quantum computers (read it here!), and k-means clustering, our first steps into the weird and wonderful world of quantum machine learning.我的最后一篇文章讨论了量子计算机上的贝叶斯网络( 在这里阅读&#xf…

BZOJ 1176: [Balkan2007]Mokia

一道CDQ分治的模板题,然而我De了一上午Bug...... 按时间分成左右两半,按x坐标排序然后把y坐标丢到树状数组里,扫一遍遇到左边的就add,遇到右边的query 几个弱智出了bug的点, 一是先分了左右两半再排序,保证的是这次的左…

深入理解InnoDB(1)—行的存储结构

1.InnoDB页的简介 页(Page)是 Innodb 存储引擎用于管理数据的最小磁盘单位。常见的页类型有数据页、Undo 页、系统页、事务数据页等 2.InnoDB行的存储格式 我们插入MySQL的记录在InnoDB中可能以4中行格式存储,分别是Compact、Redundant、D…

boltzmann_推荐系统系列第7部分:用于协同过滤的Boltzmann机器的3个变体

boltzmannRecSys系列 (RecSys Series) Update: This article is part of a series where I explore recommendation systems in academia and industry. Check out the full series: Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, and Part 7.更新: 本文是我探索…

深入理解InnoDB(2)—页的存储结构

1. 记录头信息 上一篇博客说到每行记录都会有记录头信息,用来记录每一行的一些属性 Compact行记录的记录头信息为例 1.1 delete_mask 这个属性标记着当前记录是否被删除,占用1个二进制位,值为0的时候代表记录并没有被删除,为1的…

爬虫神经网络_股市筛选和分析:在投资中使用网络爬虫,神经网络和回归分析...

爬虫神经网络与AI交易 (Trading with AI) Stock markets tend to react very quickly to a variety of factors such as news, earnings reports, etc. While it may be prudent to develop trading strategies based on fundamental data, the rapid changes in the stock mar…

深入理解InnoDB(3)—索引的存储结构

1. 索引的各种存储结构及其优缺点 1.1 二叉树 优点: 二叉树是一种比顺序结构更加高效地查找目标元素的结构,它可以从第一个父节点开始跟目标元素值比较,如果相等则返回当前节点,如果目标元素值小于当前节点,则移动到左…

深入理解InnoDB(4)—索引使用

1. 索引的代价 在了解索引的代价之前,需要再次回顾一下索引的数据结构B树 如上图,是一颗b树,关于b树的定义可以参见B树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据…

双城记s001_双城记! (使用数据讲故事)

双城记s001Keywords: Data science, Machine learning, Python, Web scraping, Foursquare关键字:数据科学,机器学习,Python,Web抓取,Foursquare https://br.pinterest.com/pin/92816442292506979/https://br.pintere…

web前端面试总结

2019独角兽企业重金招聘Python工程师标准>>> 摘要:前端的东西特别多,面试的时候我们如何从容应对,作为一个老兵,我在这里分享几点我的经验。 一、javascript 基础(es5) 1、原型:这里可以谈很多,…

tableau破解方法_使用Tableau浏览Netflix内容的简单方法

tableau破解方法Are you struggling to perform EDA with R and Python?? Here is an easy way to do exploratory data analysis using Tableau.您是否正在努力使用R和Python执行EDA? 这是使用Tableau进行探索性数据分析的简单方法。 Lets Dive in to know the …

六周第三次课

2019独角兽企业重金招聘Python工程师标准>>> 六周第三次课 9.6/9.7 awk awk也是流式编辑器,针对文档中的行来操作,一行一行地执行。 awk比sed更强大的功能是它支持了分段。 -F选项的作用是指定分隔符,如果不加-F选项,…