项目经济规模的估算方法_估算英国退欧的经济影响

项目经济规模的估算方法

On June 23 2016, the United Kingdom narrowly voted in a country-wide referendum to leave the European Union (EU). Economists at the time warned of economic losses; the Bank of England produced estimates that that GDP could be as much as 10.5% lower than the previous trend.

2016年6月23日,英国在全国范围的公民投票中以微弱的票数离开了欧盟(EU)。 当时的经济学家警告经济损失。 英格兰银行(BoE) 估计 ,GDP可能比以前的趋势低10.5%。

Image for post

The latest update from the Bank of England has lowered estimates: a 5.5% loss of GDP is now expected if a no-deal Brexit were to occur.

英格兰银行的最新消息降低了预期:如果无协议脱欧,现在预计GDP将下降5.5%。

The divorce has yet to happen of course, dragging on for three and a half years with no clear end in sight. However, the uncertainty and expectation that the UK will eventually succeed in leaving the EU is able to cause substantial harm to the economy even before the official withdrawal occurs. Here, I will be using Synthetic Control Method to produce a model that can estimate the economic impacts of Brexit so far. If you are simply interested in seeing the results and don’t care for the methodology, skip to the Conclusion section at the bottom.

离婚当然还没有发生,拖延了三年半,没有明确的结局。 但是,即使英国正式退出欧盟,英国最终能否成功退出欧盟的不确定性和期望仍可能对经济造成重大损害。 在这里,我将使用综合控制方法生成一个模型,该模型可以估计到目前为止英国脱欧的经济影响。 如果您只是对查看结果感兴趣,而不关心方法论,请跳至底部的结论部分。

方法 (Methodology)

For a sample of potential donor countries to form the synthetic control, I used all current OECD countries. The OECD consists of 36 mostly developed countries. Using OECD countries allows me to pull from OECD Data.

为了对潜在的捐助国进行综合控制,我使用了所有经合组织国家作为样本。 经合组织由36个最发达国家组成。 使用OECD国家可以使我从OECD数据中受益。

In constructing the synthetic control, I will be using the Synth package for R.

在构建综合控件时,我将使用Synth包用于R。

Selection of Predictors

预测变量的选择

To form the synthetic control, we need to include several variables that are predictive of our outcome variable (Real Gross Domestic Product per capita). I collected data on the following variables:

为了形成综合控制,我们需要包括几个可以预测结果变量(人均实际国内生产总值)的变量。 我收集了以下变量的数据:

  • Exports as a percentage of GDP

    出口占GDP的百分比
  • Employment rate

    就业率
  • Working age population as a percentage of the total population. The working age population is defined as aged 15–64.

    劳动年龄人口占总人口的百分比。 劳动年龄人口定义为15-64岁。
  • Human capital. Specifically, the percentage of 25–34 year old’s with tertiary education.

    人力资本。 具体来说,是25-34岁的大专以上学历的百分比。

Selection of Donor States

选择捐助国

In this process, any other countries that underwent a similar intervention should be removed. Luckily, no other countries have left the EU. As the OECD is mostly formed of relatively similar developed countries, I will not remove any from the sample.

在此过程中,任何接受过类似干预的国家都应删除。 幸运的是,没有其他国家离开欧盟。 由于经合组织主要由相对类似的发达国家组成,因此我不会从样本中删除任何内容。

Optimization Algorithm

优化算法

I will leave this as the default setting, which takes the best result from Nelder-Mead and BFGS. Nelder-Mead produces a better result in this case.

我将其保留为默认设置,它将获得Nelder-Mead和BFGS的最佳效果。 在这种情况下,Nelder-Mead会产生更好的结果。

I will optimize the model from 2000 to 2015.

我将从2000年到2015年对模型进行优化。

综合控制 (The Synthetic Control)

After running the function, we can review the synthetic control it has produced. The function has selected the following weights for our predictors:

运行该函数后,我们可以查看它产生的综合控件。 该函数为我们的预测变量选择了以下权重:

Image for post

Note the synthetic is virtually identical to the UK in our predictor variables:

请注意,在我们的预测变量中,合成实际上与英国相同:

Image for post

The synthetic is primarily composed of Japan (35%), Iceland (21.5%), and the US (14.4%) with smaller weights coming from several other countries. We can now see that our synthetic does a fairly good job of following the trends of the UK.

合成纤维主要由日本(35%),冰岛(21.5%)和美国(14.4%)组成,其重量较小来自其他几个国家。 现在我们可以看到,我们的合成材料在追随英国趋势方面做得相当不错。

Image for post

The period from 2002 to 2005 shows some deviation, but overall the result looks okay. The model has a Mean Squared Prediction Error (MSPE) of 214,588.

从2002年到2005年这段时期显示出一些偏差,但总体而言结果还不错。 该模型的均方预测误差(MSPE)为214,588。

结果 (Results)

We can now see a plot of the UK against the synthetic control extended to 2018.

现在我们可以看到英国针对合成控制的情节延至2018年。

Image for post

The vertical red line represents the last year before the intervention (when the referendum took place).

垂直的红线表示干预前的最后一年(举行公民投票时)。

The size of the graph makes it it difficult to assess, so we are also able to view a plot of the gaps between the synthetic and the UK to view more easily view the differences:

该图的大小使其难以评估,因此我们还可以查看合成图和英国之间的差距图,从而更轻松地查看差异:

Image for post

The model uses annual GDP, where the last year is 2018. As of this date, the UK has lost approximately $1500 per capita according to this estimate. While this model does suggest UK GDP is lower due to Brexit, the fact that the UK and the synthetic control don’t perfectly track each other means we can’t be certain of the magnitude. However, given weak GDP growth so far in 2019, we are likely to see the damage continue to grow.

该模型使用的年度GDP(去年是2018年)。根据该估计,截至该日期,英国人均损失了大约1500美元。 尽管该模型确实表明英国脱欧导致英国GDP下降,但英国和综合控制机构之间无法很好地相互追踪这一事实意味着我们无法确定其幅度。 但是,鉴于2019年迄今为止GDP增长疲软 ,我们很可能看到损失继续增加。

These results are broadly in line with results from most experts; two economists from the London School of Economics noted the UK has experienced slow-downs in GDP, investment, productivity growth, and a weakened currency since the referendum.

这些结果与大多数专家的结果基本一致; 伦敦经济学院的两位经济学家指出 ,自公投以来, 英国的 GDP,投资,生产率增长和货币走弱都经历了放缓。

结论 (Conclusion)

  • This analysis suggests the UK has already experienced a significant economic hit due to the Brexit referendum

    该分析表明,由于英国退欧公投,英国已经遭受了重大的经济打击
  • The UK has likely lost about $1500 per person of GDP from the impacts of Brexit so far

    迄今为止,英国可能因英国脱欧的影响而使每人GDP损失约1500美元
  • If the UK had not voted to leave the EU, UK GDP per capita would likely be about 3.25% higher than it is right now

    如果英国没有投票决定退出欧盟,那么英国人均GDP可能会比目前高出约3.25%。
  • The economic damages are likely to get worse as the saga continues, and 2019 was very possibly the worst year for the UK economy yet

    随着传奇的继续,经济损失可能会变得更糟,2019年很可能是英国经济最糟糕的一年

翻译自: https://medium.com/economic-watch/estimating-the-economic-impact-of-brexit-5fbbf7258790

项目经济规模的估算方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/391466.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

奇迹网站可视化排行榜]_外观可视化奇迹

奇迹网站可视化排行榜]When reading a visualization is what we see really what we get?阅读可视化内容时,我们真正看到的是什么? This post summarizes and accompanies our paper “Surfacing Visualization Mirages” that was presented at CHI …

机器学习 量子_量子机器学习:神经网络学习

机器学习 量子My last articles tackled Bayes nets on quantum computers (read it here!), and k-means clustering, our first steps into the weird and wonderful world of quantum machine learning.我的最后一篇文章讨论了量子计算机上的贝叶斯网络( 在这里阅读&#xf…

BZOJ 1176: [Balkan2007]Mokia

一道CDQ分治的模板题,然而我De了一上午Bug...... 按时间分成左右两半,按x坐标排序然后把y坐标丢到树状数组里,扫一遍遇到左边的就add,遇到右边的query 几个弱智出了bug的点, 一是先分了左右两半再排序,保证的是这次的左…

深入理解InnoDB(1)—行的存储结构

1.InnoDB页的简介 页(Page)是 Innodb 存储引擎用于管理数据的最小磁盘单位。常见的页类型有数据页、Undo 页、系统页、事务数据页等 2.InnoDB行的存储格式 我们插入MySQL的记录在InnoDB中可能以4中行格式存储,分别是Compact、Redundant、D…

boltzmann_推荐系统系列第7部分:用于协同过滤的Boltzmann机器的3个变体

boltzmannRecSys系列 (RecSys Series) Update: This article is part of a series where I explore recommendation systems in academia and industry. Check out the full series: Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, and Part 7.更新: 本文是我探索…

深入理解InnoDB(2)—页的存储结构

1. 记录头信息 上一篇博客说到每行记录都会有记录头信息,用来记录每一行的一些属性 Compact行记录的记录头信息为例 1.1 delete_mask 这个属性标记着当前记录是否被删除,占用1个二进制位,值为0的时候代表记录并没有被删除,为1的…

爬虫神经网络_股市筛选和分析:在投资中使用网络爬虫,神经网络和回归分析...

爬虫神经网络与AI交易 (Trading with AI) Stock markets tend to react very quickly to a variety of factors such as news, earnings reports, etc. While it may be prudent to develop trading strategies based on fundamental data, the rapid changes in the stock mar…

深入理解InnoDB(3)—索引的存储结构

1. 索引的各种存储结构及其优缺点 1.1 二叉树 优点: 二叉树是一种比顺序结构更加高效地查找目标元素的结构,它可以从第一个父节点开始跟目标元素值比较,如果相等则返回当前节点,如果目标元素值小于当前节点,则移动到左…

深入理解InnoDB(4)—索引使用

1. 索引的代价 在了解索引的代价之前,需要再次回顾一下索引的数据结构B树 如上图,是一颗b树,关于b树的定义可以参见B树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据…

双城记s001_双城记! (使用数据讲故事)

双城记s001Keywords: Data science, Machine learning, Python, Web scraping, Foursquare关键字:数据科学,机器学习,Python,Web抓取,Foursquare https://br.pinterest.com/pin/92816442292506979/https://br.pintere…

web前端面试总结

2019独角兽企业重金招聘Python工程师标准>>> 摘要:前端的东西特别多,面试的时候我们如何从容应对,作为一个老兵,我在这里分享几点我的经验。 一、javascript 基础(es5) 1、原型:这里可以谈很多,…

tableau破解方法_使用Tableau浏览Netflix内容的简单方法

tableau破解方法Are you struggling to perform EDA with R and Python?? Here is an easy way to do exploratory data analysis using Tableau.您是否正在努力使用R和Python执行EDA? 这是使用Tableau进行探索性数据分析的简单方法。 Lets Dive in to know the …

六周第三次课

2019独角兽企业重金招聘Python工程师标准>>> 六周第三次课 9.6/9.7 awk awk也是流式编辑器,针对文档中的行来操作,一行一行地执行。 awk比sed更强大的功能是它支持了分段。 -F选项的作用是指定分隔符,如果不加-F选项,…

macaca web(4)

米西米西滴,吃过中午饭来一篇,话说,上回书说道macaca 测试web(3),参数驱动来搞,那么有小伙本又来给雷子来需求, 登录模块能不能给我给重新封装一下吗, 我说干嘛封装&…

rfm模型分析与客户细分_如何使用基于RFM的细分来确定最佳客户

rfm模型分析与客户细分With some free time at hand in the midst of COVID-19 pandemic, I decided to do pro bono consulting work. I was helping a few e-commerce companies with analyzing their customer data. A common theme I encountered during this work was tha…

数据仓库项目分析_数据分析项目:仓库库存

数据仓库项目分析The code for this project can be found at my GitHub.该项目的代码可以在我的GitHub上找到 。 介绍 (Introduction) The goal of this project was to analyse historic stock/inventory data to decide how much stock of each item a retailer should hol…

web前端效率提升之浏览器与本地文件的映射-遁地龙卷风

1.chrome浏览器,机制是拦截url,      1.在浏览器Element中调节的css样式可以直接同步到本地文件,反之亦然,浏览器会重新加载css,省去刷新   2.在source面板下对js的编辑可以同步到本地文件,反之亦然…

归因分析_归因分析:如何衡量影响? (第2部分,共2部分)

归因分析By Lisa Cohen, Ryan Bouchard, Jane Huang, Daniel Yehdego and Siddharth Kumar由 丽莎科恩 , 瑞安布沙尔 , 黄美珍 , 丹尼尔Yehdego 和 亚洲时报Siddharth库马尔 介绍 (Introduction) This is our second article in a series wh…

linux与磁盘相关的内容

本节所讲内容1.认识SAS-SATA-SSD-SCSI-IDE硬盘2.使用fdisk对磁盘进行操作,分区,格式化3.开机自动挂载分区4.使用parted操作大于等于4T硬盘5.扩展服务器swap内存空间 MBR(Master Boot Record)主引导记录,也就是现有的硬盘分区模式。MBR分区的标…

页面布局

页面布局两大类&#xff1a;   主站&#xff1a; 1 <div classpg-header> 2 <div stylewidth:980px;margin:0 auto;> 3 内容自动居中 4 </div> 5 <div classpg-content></div> 6 <div classpg-footer></div&…