量子信息与量子计算_量子计算为23美分。

量子信息与量子计算

On Aug 13, 2020, AWS announced the General Availability of Amazon Braket. Braket is their fully managed quantum computing service. It is available on an on-demand basis, much like SageMaker. That means the everyday developer and data scientist can tinker around and kick the tires.

2020年8月13日, AWS宣布了Amazon Braket的全面可用性。 Braket是其完全托管的量子计算服务。 它像SageMaker一样按需提供。 这意味着每天的开发人员和数据科学家都可以修补和踢轮胎。

I wanted to take a look at the Braket Console and see how intuitive the experience was. Ease of use and friendly UI is crucial to me. I am a novice in the area of quantum computing, so I have much to learn. The introductory notebooks available make learning the basics easy. The very basics, I should say. The science behind the magic gets quite complicated, but it is interesting.

我想看一下Braket Console,看看这种体验有多直观。 易于使用和友好的用户界面对我至关重要。 我是量子计算领域的新手,因此我要学习很多东西。 可用的入门笔记本使学习基础变得容易。 我应该说非常基本的东西。 魔术背后的科学变得相当复杂,但这很有趣。

成本 (Cost)

My first order of business was to check out the cost. When I played around with some SageMaker projects, my AWS budget alarm kicked off early. I don’t want any $100 surprises, and I’m sure you don’t either. From what I gather, the cost is broken down differently in four areas. The notebooks are based on SageMaker pricing and billed as such. The larger your instance, the more it costs. The AWS Simulator runs at $4.50 an hour. The Quantum devices run at their own per ‘shot’ basis. And finally, you do send the output to S3, so there is a nominal storage fee. I was cautious to check my billing during this process. I knew I was running a tiny sample so that the costs would be low — less than $1.00. In the end, it cost me 23 cents.

我的第一笔生意是检查费用。 当我处理一些SageMaker项目时,我的AWS预算警报很早就开始了。 我不希望有$ 100的惊喜,而且我相信您也不会。 根据我的收集,成本在四个方面进行了不同的细分。 这些笔记本基于SageMaker的定价,并以此计费。 您的实例越大,成本就越高。 AWS模拟器每小时收费4.50美元。 Quantum器件以“发射”为基础独立运行。 最后,您确实将输出发送到S3,因此需要支付少量的存储费。 在此过程中,我非常谨慎地检查帐单。 我知道我正在运行一个很小的样本,因此成本较低-不到1.00美元。 最后,它花了我23美分。

23 cents to run on this geek eye candy? Not bad.

这款极客型眼糖果的价格为23美分? 不错。

准备 (Prep)

All of the information below assumes you have an AWS account set up, including billing. If you are setting up your account for the first time, there are some free tier options, though not for quantum devices.

以下所有信息均假设您已设置AWS账户(包括账单)。 如果您是第一次设置帐户,则有一些免费套餐选项 ,但不适用于量子设备。

Once you have an account, you’ll need to name an S3 bucket for your output. Other than that, you’re ready to go.

拥有帐户后,您需要为输出命名一个S3存储桶。 除此之外,您已经准备好了。

运行示例 (Running the example)

Sometimes jumping into the code is the best way to learn how the hardware works. Hands-on tutorials can be hard to find at this early stage. I started with the AWS blog itself. It has a step-by-step guide with screenprints.

有时,跳入代码是学习硬件工作方式的最佳方法。 在此早期阶段很难找到动手教程。 我从AWS博客本身开始。 它具有有关屏幕截图的分步指南。

https://awsfeed.com/whats-new/aws/amazon-braket-go-hands-on-with-quantum-computing

https://awsfeed.com/whats-new/aws/amazon-braket-go-hands-on-with-quantum-computing

It’s pretty straight forward in regards to running the sample notebooks.

就运行示例笔记本而言,这非常简单。

I only had one small hiccup; I overlooked updating the S3 bucket variable. If you don’t update this value with the S3 bucket of your choosing, you will get this error:

我只有一个小小的打ic。 我忽略了更新S3存储桶变量。 如果不使用您选择的S3存储桶更新此值,则会出现以下错误:

“ValidationException: An error occurred (ValidationException) when calling the CreateQuantumTask operation: Caller doesn’t have access to amazon-braket-<##########> or it doesn’t exist.”

If you want to run a quick test to be sure you have all of your configurations correct, below is a simple single-cell script. Based on the SuperDense example, it covers using a local simulator (that comes with the SDK), the AWS simulator, and the one quantum device (ionQ) that was available in my region at the time of my test.

如果要运行快速测试以确保所有配置正确,下面是一个简单的单单元脚本。 基于SuperDense示例,它涵盖了使用本地模拟器(SDK附带),AWS模拟器以及测试时在我所在地区可用的一个量子设备( ionQ )。

# !pip show amazon-braket-sdk | grep Version# Import Braket librariesfrom braket.circuits import Circuit, Gate, Momentsfrom braket.circuits.instruction import Instructionfrom braket.aws import AwsDeviceimport matplotlib.pyplot as pltimport boto3import timefrom braket.devices import LocalSimulator# Please enter the S3 bucket you created during onboarding in the code below,# or create a new bucket named as ‘amazon-braket-<your account number>’ to run the below code without changes.aws_account_id = boto3.client(“sts”).get_caller_identity()[“Account”]my_bucket = f”amazon-braket-{aws_account_id}” # the name of the bucketmy_prefix = “simulation-output” # the name of the folder in the buckets3_folder = (my_bucket, my_prefix)# Run local simulatordevice = LocalSimulator()bell = Circuit().h(0).cnot(0, 1)print(bell)print(‘local simulator results: ‘ + str(device.run(bell, shots=100).result().measurement_counts))# Run AWS simulatordevice = AwsDevice(“arn:aws:braket:::device/quantum-simulator/amazon/sv1”)bell = Circuit().h(0).cnot(0, 1)print(‘aws simulator results: ‘)get_result(device, bell, s3_folder)

My output:

我的输出:

Image for post
image by author
图片作者

支架示例笔记本 (Braket Example Notebooks)

Advanced Circuits Algorithms

先进电路算法

  • Grover’s quantum algorithm

    格罗弗的量子算法
  • Quantum Amplitude Amplification (QAA)

    量子振幅放大(QAA)
  • Quantum Fourier Transform (QFT)

    量子傅立叶变换(QFT)
  • Quantum Phase Estimation (QPE)

    量子相位估计(QPE)

Hybrid Quantum Algorithms

混合量子算法

  • Quantum Approximate Optimization Algorithm (QAOA)

    量子近似优化算法(QAOA)
  • Transverse Ising Model with Variational Quantum Eigenvalue Solver (VQE)

    具有变分量子特征值求解器(VQE)的横向Ising模型

Quantum Annealing

量子退火

  • Anatomy of Quantum Annealing with D-Wave

    D波的量子退火解剖
  • D-Wave Graph Partitioning — Quadratic Unconstrained Binary Optimization (QUBO)

    D波图分区—二次无约束二进制优化(QUBO)
  • D-Wave Maximum Cut Problem (MaxCut)

    D波最大切割问题(MaxCut)
  • D-Wave Minimum Vertex Cover Problem

    D波最小顶点覆盖问题

Simple Circuits Algorithms +++ start here

简单电路算法+++从这里开始

  • Anatomy of quantum circuits

    量子电路的解剖
  • Backend Devices — GHZ state Preparation

    后端设备-GHZ状态准备
  • Backend Devices — Bell state Preparation

    后端设备-响铃状态准备
  • Superdense Coding

    超密编码

总体 (Overall)

I was pleased to see such detailed and educational notebooks right within the notebook instance. These are not entry-level concepts, but break down the workflow nicely. It is a good intro to the platform. Above, I have listed the different folders of examples provided. I’d recommend starting with the Simple Circuit Algorithms. The instructions walk you through the building of the circuit. The circuit visualization options aren’t as nice as some other platforms, but I imagine this will improve over time. AWS is known for getting the meat of the product to market then adding in the friendlier features in subsequent releases. The price is right, so give it a try.

我很高兴在笔记本实例中看到如此详细且具有教育意义的笔记本。 这些不是入门级的概念,但可以很好地分解工作流程。 这是该平台的一个很好的介绍。 上面,我列出了提供的示例的不同文件夹。 我建议从简单电路算法开始。 这些说明将引导您完成电路的构建。 电路可视化选项不如其他平台好,但我认为随着时间的推移,这种情况会有所改善。 AWS以将产品推向市场然后在后续版本中添加更友好的功能而闻名。 价格合适,请尝试一下。

与往常一样-记住停止并删除您的笔记本实例。 (As always — remember to stop and delete your notebook instances.)

Image for post
image by author
图片作者

翻译自: https://towardsdatascience.com/quantum-computing-for-23-cents-917e1f664cea

量子信息与量子计算

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/390804.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全面理解Java内存模型

Java内存模型即Java Memory Model&#xff0c;简称JMM。JMM定义了Java 虚拟机(JVM)在计算机内存(RAM)中的工作方式。JVM是整个计算机虚拟模型&#xff0c;所以JMM是隶属于JVM的。 如果我们要想深入了解Java并发编程&#xff0c;就要先理解好Java内存模型。Java内存模型定义了多…

leetcode 1074. 元素和为目标值的子矩阵数量(map+前缀和)

给出矩阵 matrix 和目标值 target&#xff0c;返回元素总和等于目标值的非空子矩阵的数量。 子矩阵 x1, y1, x2, y2 是满足 x1 < x < x2 且 y1 < y < y2 的所有单元 matrix[x][y] 的集合。 如果 (x1, y1, x2, y2) 和 (x1’, y1’, x2’, y2’) 两个子矩阵中部分坐…

失物招领php_新奥尔良圣徒队是否增加了失物招领?

失物招领phpOver the past couple of years, the New Orleans Saints’ offense has been criticized for its lack of wide receiver options. Luckily for Saints’ fans like me, this area has been addressed by the signing of Emmanuel Sanders back in March — or has…

leetcode 5756. 两个数组最小的异或值之和(状态压缩dp)

题目 给你两个整数数组 nums1 和 nums2 &#xff0c;它们长度都为 n 。 两个数组的 异或值之和 为 (nums1[0] XOR nums2[0]) (nums1[1] XOR nums2[1]) … (nums1[n - 1] XOR nums2[n - 1]) &#xff08;下标从 0 开始&#xff09;。 比方说&#xff0c;[1,2,3] 和 [3,2,1…

客户细分模型_Avarto金融解决方案的客户细分和监督学习模型

客户细分模型Lets assume that you are a CEO of a company which have some X amount of customers in a city with 1000 *X population. Analyzing the trends/features of your customer and segmenting the population of the city to land new potential customers would …

leetcode 231. 2 的幂

给你一个整数 n&#xff0c;请你判断该整数是否是 2 的幂次方。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 如果存在一个整数 x 使得 n 2x &#xff0c;则认为 n 是 2 的幂次方。 示例 1&#xff1a; 输入&#xff1a;n 1 输出&#xff1a;tr…

leetcode 342. 4的幂

给定一个整数&#xff0c;写一个函数来判断它是否是 4 的幂次方。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 整数 n 是 4 的幂次方需满足&#xff1a;存在整数 x 使得 n 4x 示例 1&#xff1a; 输入&#xff1a;n 16 输出&#xff1a;true …

梯度反传_反事实政策梯度解释

梯度反传Among many of its challenges, multi-agent reinforcement learning has one obstacle that is overlooked: “credit assignment.” To explain this concept, let’s first take a look at an example…在许多挑战中&#xff0c;多主体强化学习有一个被忽略的障碍&a…

大数据与Hadoop

大数据的定义 大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。 大数据的概念–4VXV 1,数据量大&#xff08;Volume&#xff09;2,类型繁多&#xff08;Variety &#xff09;3,速度快时效高&#xff08;Velocity&#xff09;4,价值密度低…

facebook.com_如何降低电子商务的Facebook CPM

facebook.comWith the 2020 election looming, Facebook advertisers and e-commerce stores are going to continually see their ad costs go up as the date gets closer (if they haven’t already).随着2020年选举的临近&#xff0c;随着日期越来越近&#xff0c;Facebook…

Hadoop安装及配置

Hadoop的三种运行模式 单机模式&#xff08;Standalone,独立或本地模式&#xff09;:安装简单,运行时只启动单个进程,仅调试用途&#xff1b;伪分布模式&#xff08;Pseudo-Distributed&#xff09;:在单节点上同时启动namenode、datanode、secondarynamenode、resourcemanage…

漏洞发布平台-安百科技

一个不错的漏洞发布平台&#xff1a;https://vul.anbai.com/ 转载于:https://blog.51cto.com/antivirusjo/2093758

西格尔零点猜想_我从埃里克·西格尔学到的东西

西格尔零点猜想I finished reading Eric Siegel’s Predictive Analytics. And I have to say it was an awesome read. How do I define an awesome or great book? A book that changes your attitude permanently. You must not be the same person that you were before y…

HDFS 技术

HDFS定义 Hadoop Distributed File System&#xff0c;是一个使用 Java 实现的、分布式的、可横向扩展的文件系 统&#xff0c;是 HADOOP 的核心组件 HDFS特点 处理超大文件流式地访问数据运行于廉价的商用机器集群上&#xff1b; HDFS 不适合以下场合&#xff1a;低延迟数据…

深度学习算法和机器学习算法_啊哈! 4种流行的机器学习算法的片刻

深度学习算法和机器学习算法Most people are either in two camps:大多数人都在两个营地中&#xff1a; I don’t understand these machine learning algorithms. 我不了解这些机器学习算法。 I understand how the algorithms work, but not why they work. 我理解的算法是如…

Python第一次周考(0402)

2019独角兽企业重金招聘Python工程师标准>>> 一、单选 1、Python3中下列语句错误的有哪些&#xff1f; A s input() B s raw_input() C print(hello world.) D print(hello world.) 2、下面哪个是 Pycharm 在 Windows 下 默认 用于“批量注释”的快捷键 A Ctrl d…

ASP.NET 页面之间传值的几种方式

对于任何一个初学者来说&#xff0c;页面之间传值可谓是必经之路&#xff0c;却又是他们的难点。其实&#xff0c;对大部分高手来说&#xff0c;未必不是难点。 回想2016年面试的将近300人中&#xff0c;有实习生&#xff0c;有应届毕业生&#xff0c;有1-3年经验的&#xff0c…

Mapreduce原理和YARN

MapReduce定义 MapReduce是一种分布式计算框架&#xff0c;由Google公司2004年首次提出&#xff0c;并贡献给Apache基金会。 MR版本 MapReduce 1.0&#xff0c;Hadoop早期版本(只支持MR模型)MapReduce 2.0&#xff0c;Hadoop 2.X版本&#xff08;引入了YARN资源调度框架后&a…

数据可视化图表类型_数据可视化中12种最常见的图表类型

数据可视化图表类型In the current era of large amounts of information in the form of numbers available everywhere, it is a difficult task to understand and get insights from these dense piles of data.在当今时代&#xff0c;到处都是数字形式的大量信息&#xff…

MapReduce编程

自定义Mapper类 class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> &#xff5b; … }自定义mapper类都必须实现Mapper类&#xff0c;有4个类型参数&#xff0c;分别是&#xff1a; Object&#xff1a;Input Key Type-------------K1Text: Input…